976,905 research outputs found

    Consistent Approximations for the Optimal Control of Constrained Switched Systems

    Full text link
    Though switched dynamical systems have shown great utility in modeling a variety of physical phenomena, the construction of an optimal control of such systems has proven difficult since it demands some type of optimal mode scheduling. In this paper, we devise an algorithm for the computation of an optimal control of constrained nonlinear switched dynamical systems. The control parameter for such systems include a continuous-valued input and discrete-valued input, where the latter corresponds to the mode of the switched system that is active at a particular instance in time. Our approach, which we prove converges to local minimizers of the constrained optimal control problem, first relaxes the discrete-valued input, then performs traditional optimal control, and then projects the constructed relaxed discrete-valued input back to a pure discrete-valued input by employing an extension to the classical Chattering Lemma that we prove. We extend this algorithm by formulating a computationally implementable algorithm which works by discretizing the time interval over which the switched dynamical system is defined. Importantly, we prove that this implementable algorithm constructs a sequence of points by recursive application that converge to the local minimizers of the original constrained optimal control problem. Four simulation experiments are included to validate the theoretical developments

    Slow Adaptive OFDMA Systems Through Chance Constrained Programming

    Full text link
    Adaptive OFDMA has recently been recognized as a promising technique for providing high spectral efficiency in future broadband wireless systems. The research over the last decade on adaptive OFDMA systems has focused on adapting the allocation of radio resources, such as subcarriers and power, to the instantaneous channel conditions of all users. However, such "fast" adaptation requires high computational complexity and excessive signaling overhead. This hinders the deployment of adaptive OFDMA systems worldwide. This paper proposes a slow adaptive OFDMA scheme, in which the subcarrier allocation is updated on a much slower timescale than that of the fluctuation of instantaneous channel conditions. Meanwhile, the data rate requirements of individual users are accommodated on the fast timescale with high probability, thereby meeting the requirements except occasional outage. Such an objective has a natural chance constrained programming formulation, which is known to be intractable. To circumvent this difficulty, we formulate safe tractable constraints for the problem based on recent advances in chance constrained programming. We then develop a polynomial-time algorithm for computing an optimal solution to the reformulated problem. Our results show that the proposed slow adaptation scheme drastically reduces both computational cost and control signaling overhead when compared with the conventional fast adaptive OFDMA. Our work can be viewed as an initial attempt to apply the chance constrained programming methodology to wireless system designs. Given that most wireless systems can tolerate an occasional dip in the quality of service, we hope that the proposed methodology will find further applications in wireless communications
    • …
    corecore