4 research outputs found

    Cooperation of unmanned systems for agricultural applications: A theoretical framework

    Get PDF
    Agriculture 4.0 comprises a set of technologies that combines sensors, information systems, enhanced machinery, and informed management with the objective of optimising production by accounting for variabilities and uncertainties within agricultural systems. Autonomous ground and aerial vehicles can lead to favourable improvements in management by performing in-field tasks in a time-effective way. In particular, greater benefits can be achieved by allowing cooperation and collaborative action among unmanned vehicles, both aerial and ground, to perform in-field operations in precise and time-effective ways. In this work, the preliminary and crucial step of analysing and understanding the technical and methodological challenges concerning the main problems involved is performed. An overview of the agricultural scenarios that can benefit from using collaborative machines and the corresponding cooperative schemes typically adopted in this framework are presented. A collection of kinematic and dynamic models for different categories of autonomous aerial and ground vehicles is provided, which represents a crucial step in understanding the vehicles behaviour when full autonomy is desired. Last, a collection of the state-of-the-art technologies for the autonomous guidance of drones is provided, summarising their peculiar characteristics, and highlighting their advantages and shortcomings with a specific focus on the Agriculture 4.0 framework. A companion paper reports the application of some of these techniques in a complete case study in sloped vineyards, applying the proposed multi-phase collaborative scheme introduced here

    Optimal Control of Multiple Quadrotors for Transporting a Cable Suspended Payload

    Get PDF
    In this thesis, the main aim is to improve the flight control performance for a cable suspended payload with single and two quadrotors based on optimised control techniques. The study utilised optimal controllers, such as the Linear Quadratic Regulator LQR, the Iterative based LQR (ILQR), the Model Predictive Control MPC and the dynamic game controller to solve tracking control problems in terms of stabilisation, accuracy, constraints and collision avoidance. The LQR control was applied to the system as the first control method and compared with the classical Proportional-Derivative controller PD. It was used to achieve the load path tracking performance for single and two quadrotors with a cable slung load. The second controller was ILQR, which was developed based on the LQR control method to deal with the model nonlinearity. The MPC technique was also applied to the linearised nonlinear model LMPC of two quadrotors with a payload suspended by cables and compared with a nonlinear MPC (NMPC). Both MPC controllers LMPC and NMPC considered the constraints imposed on the system states and control inputs. The dynamic game control method was developed based on an incentive strategy for a leader-follower framework with the consideration of different optimal cost functions. It was applied to the linearised nonlinear model. Selecting these control techniques led to a number of achievements. Firstly, they improved the system performance in terms of achieving the system stability and reducing the steady-state errors. Secondly, the system parameter uncertainties were taken into consideration by utilising the ILQR controller. Thirdly, the MPC controllers guaranteed the handling of constraints and external disturbances in linear and nonlinear systems. Finally, avoiding collision between the leader and follower robots was achieved by applying the dynamic game controller. The controllers were tested in MATLAB simulation and verified for various desired predefined trajectories. In real experiments, these controllers were used as high-level controllers, which produce the optimised trajectory points. Then a low-level controller (PD controller) was used to follow the optimised trajectory points
    corecore