700 research outputs found

    Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach

    Get PDF
    10.1109/TNN.2008.2003290IEEE Transactions on Neural Networks19111873-1886ITNN

    Adaptive Control of Unknown Pure Feedback Systems with Pure State Constraints

    Full text link
    This paper deals with the tracking control problem for a class of unknown pure feedback system with pure state constraints on the state variables and unknown time-varying bounded disturbances. An adaptive controller is presented for such systems for the very first time. The controller is designed using the backstepping method. While designing it, Barrier Lyapunov Functions is used so that the state variables do not contravene its constraints. In order to cope with the unknown dynamics of the system, an online approximator is designed using a neural network with a novel adaptive law for its weight update. In the stability analysis of the system, the time derivative of Lyapunov function involves known virtual control coefficient with unknown direction and to deal with such problem Nussbaum gain is used to design the control law. Furthermore, to make the controller robust and computationally inexpensive, a novel disturbance observer is designed to estimate the disturbance along with neural network approximation error and the time derivative of virtual control input. The effectiveness of the proposed approach is demonstrated through a simulation study on the third-order nonlinear system

    Adaptive Backstepping Control for Fractional-Order Nonlinear Systems with External Disturbance and Uncertain Parameters Using Smooth Control

    Full text link
    In this paper, we consider controlling a class of single-input-single-output (SISO) commensurate fractional-order nonlinear systems with parametric uncertainty and external disturbance. Based on backstepping approach, an adaptive controller is proposed with adaptive laws that are used to estimate the unknown system parameters and the bound of unknown disturbance. Instead of using discontinuous functions such as the sign\mathrm{sign} function, an auxiliary function is employed to obtain a smooth control input that is still able to achieve perfect tracking in the presence of bounded disturbances. Indeed, global boundedness of all closed-loop signals and asymptotic perfect tracking of fractional-order system output to a given reference trajectory are proved by using fractional directed Lyapunov method. To verify the effectiveness of the proposed control method, simulation examples are presented.Comment: Accepted by the IEEE Transactions on Systems, Man and Cybernetics: Systems with Minor Revision

    Adaptive Fuzzy Tracking Control for Nonlinear State Constrained Pure-Feedback Systems With Input Delay via Dynamic Surface Technique

    Full text link
    This brief constructs the adaptive backstepping control scheme for a class of pure-feedback systems with input delay and full state constraints. With the help of Mean Value Theorem, the pure-feedback system is transformed into strict-feedback one. Barrier Lyapunov functions are employed to guarantee all of the states remain constrained within predefined sets. By introducing the Pade approximation method and corresponding intermediate, the impact generated by input delay on the output tracking performance of the system can be eliminated. Furthermore, a low-pass filter driven by a newly-defined control input, is employed to generate the actual control input, which facilitates the design of backstepping control. To approximate the unknown functions with a desired level of accuracy, the fuzzy logic systems (FLSs) are utilized by choosing appropriate fuzzy rules, logics and so on. The minimal learning parameter (MLP) technique is employed to decrease the number of nodes and parameters in FLSs, and dynamic surface control (DSC) technique is leveraged to avoid so-called "explosion of complexity". Moreover, smooth robust compensators are introduced to circumvent the influences of external disturbance and approximation errors. By stability analysis, it is proved that all of signals in the closed-loop system are semi-globally ultimately uniform bounded, and the tracking error can be within a arbitrary small neighbor of origin via selecting appropriate parameters of controllers. Finally, the results of numerical illustration are provided to demonstrate the effectiveness of the designed method.Comment: arXiv admin note: text overlap with arXiv:2310.1540

    Finite-Time Adaptive Fuzzy Tracking Control for Nonlinear State Constrained Pure-Feedback Systems

    Full text link
    This paper investigates the finite-time adaptive fuzzy tracking control problem for a class of pure-feedback system with full-state constraints. With the help of Mean-Value Theorem, the pure-feedback nonlinear system is transformed into strict-feedback case. By employing finite-time-stable like function and state transformation for output tracking error, the output tracking error converges to a predefined set in a fixed finite interval. To tackle the problem of state constraints, integral Barrier Lyapunov functions are utilized to guarantee that the state variables remain within the prescribed constraints with feasibility check. Fuzzy logic systems are utilized to approximate the unknown nonlinear functions. In addition, all the signals in the closed-loop system are guaranteed to be semi-global ultimately uniformly bounded. Finally, two simulation examples are given to show the effectiveness of the proposed control strategy

    Adaptive Predictive Control Using Neural Network for a Class of Pure-feedback Systems in Discrete-time

    Get PDF
    10.1109/TNN.2008.2000446IEEE Transactions on Neural Networks1991599-1614ITNN

    Multidimensional Taylor Network Optimal Control of MIMO Nonlinear Systems without Models for Tracking by Output Feedback

    Get PDF
    The actual controlled objects are generally multi-input and multioutput (MIMO) nonlinear systems with imprecise models or even without models, so it is one of the hot topics in the control theory. Due to the complex internal structure, the general control methods without models tend to be based on neural networks. However, the neuron of neural networks includes the exponential function, which contributes to the complexity of calculation, making the neural network control unable to meet the real-time requirements. The newly developed multidimensional Taylor network (MTN) requires only addition and multiplication, so it is easy to realize real-time control. In the present study, the MTN approach is extended to MIMO nonlinear systems without models to realize adaptive output feedback control. The MTN controller is proposed to guarantee the stability of the closed-loop system. Our experimental results show that the output signals of the system are bounded and the tracking error goes nearly to zero. The MTN optimal controller is proven to promise far better real-time dynamic performance and robustness than the BP neural network self-adaption reconstitution controller
    corecore