1,380 research outputs found

    Energy-Efficient Cooperative Protocols for Full-Duplex Relay Channels

    Full text link
    In this work, energy-efficient cooperative protocols are studied for full-duplex relaying (FDR) with loopback interference. In these protocols, relay assistance is only sought under certain conditions on the different link outages to ensure effective cooperation. Recently, an energy-efficient selective decode-and-forward protocol was proposed for FDR, and was shown to outperform existing schemes in terms of outage. Here, we propose an incremental selective decode-and-forward protocol that offers additional power savings, while keeping the same outage performance. We compare the performance of the two protocols in terms of the end-to-end signal-to-noise ratio cumulative distribution function via closed-form expressions. Finally, we corroborate our theoretical results with simulation, and show the relative relay power savings in comparison to non-selective cooperation in which the relay cooperates regardless of channel conditions

    Performance assessment of a radio access network augmented with user equipment enabled with relaying capabilities

    Get PDF
    This Master's Thesis is encompassed in a vision of a Beyond 5G (B5G) scenario, where the User Equipment is exploited not only to satisfy the specific needs of the user, but also to augment the Radio Access Network (RAN) infrastructure. The research work has consisted in studying and analysing the deployment of a network using UEs as relaying devices in order to achieve an augmented RAN that will be able to offer a better performance to the users, including higher spectral efficiency, and lower outage probability. The conducted studies have consisted in performing variations on the configuration parameters of the network, as well as characterising the relay nodes, by means of simulations. The obtained results have then been analysed, evaluating them in terms of spectral efficiency and outage probability, and a specific relay activation strategy has been proposed, which has proven to introduce improvements in the network performance

    Double-Directional Information Azimuth Spectrum and Relay Network Tomography for a Decentralized Wireless Relay Network

    Full text link
    A novel channel representation for a two-hop decentralized wireless relay network (DWRN) is proposed, where the relays operate in a completely distributive fashion. The modeling paradigm applies an analogous approach to the description method for a double-directional multipath propagation channel, and takes into account the finite system spatial resolution and the extended relay listening/transmitting time. Specifically, the double-directional information azimuth spectrum (IAS) is formulated to provide a compact representation of information flows in a DWRN. The proposed channel representation is then analyzed from a geometrically-based statistical modeling perspective. Finally, we look into the problem of relay network tomography (RNT), which solves an inverse problem to infer the internal structure of a DWRN by using the instantaneous doubledirectional IAS recorded at multiple measuring nodes exterior to the relay region

    On the Performance of Millimeter Wave-based RF-FSO Multi-hop and Mesh Networks

    Full text link
    This paper studies the performance of multi-hop and mesh networks composed of millimeter wave (MMW)-based radio frequency (RF) and free-space optical (FSO) links. The results are obtained in cases with and without hybrid automatic repeat request (HARQ). Taking the MMW characteristics of the RF links into account, we derive closed-form expressions for the networks' outage probability and ergodic achievable rates. We also evaluate the effect of various parameters such as power amplifiers efficiency, number of antennas as well as different coherence times of the RF and the FSO links on the system performance. Finally, we determine the minimum number of the transmit antennas in the RF link such that the same rate is supported in the RF- and the FSO-based hops. The results show the efficiency of the RF-FSO setups in different conditions. Moreover, HARQ can effectively improve the outage probability/energy efficiency, and compensate for the effect of hardware impairments in RF-FSO networks. For common parameter settings of the RF-FSO dual-hop networks, outage probability of 10^{-4} and code rate of 3 nats-per-channel-use, the implementation of HARQ with a maximum of 2 and 3 retransmissions reduces the required power, compared to cases with open-loop communication, by 13 and 17 dB, respectively.Comment: Submitted to IEEE Transactions on Wireless Communication

    V2V-Assisted V2I MmWave Communication for Cooperative Perception with Information Value-Based Relay

    Get PDF
    Millimeter-wave (mmWave) vehicular communication is a key technology that enables autonomous vehicles to collaborate in environment perception, thereby improving traffic efficiency and safety to a new level. Many recent works have focused on relay-based solutions to overcome the inherent defects of mmWave, such as the severe path loss and its sensitivity to blockages. However, the selfishness of the vehicles is often ignored. Considering the application-oriented nature of vehicular communication, we propose an information value-based relay strategy for mmWave vehicle-to-infrastructure (V2I) transmission in this paper. Specifically, the vehicles are allowed to make relay decisions based on the evaluation of the value of messages from their own perspectives. To this end, a simple relay probability model based on the required awareness range is introduced. Through the use of stochastic geometry to model the vehicular network, the outage performance is analyzed and the results are validated by simulations. Impacts of both network and application related parameters on the outage performance are investigated. These preliminary results laid the foundation for the further expansion of the information value-based relay strategies to a wider range of network settings

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies
    • …
    corecore