862 research outputs found

    Optimal time sharing in underlay cognitive radio systems with RF energy harvesting

    Full text link
    Due to the fundamental tradeoffs, achieving spectrum efficiency and energy efficiency are two contending design challenges for the future wireless networks. However, applying radio-frequency (RF) energy harvesting (EH) in a cognitive radio system could potentially circumvent this tradeoff, resulting in a secondary system with limitless power supply and meaningful achievable information rates. This paper proposes an online solution for the optimal time allocation (time sharing) between the EH phase and the information transmission (IT) phase in an underlay cognitive radio system, which harvests the RF energy originating from the primary system. The proposed online solution maximizes the average achievable rate of the cognitive radio system, subject to the ε\varepsilon-percentile protection criteria for the primary system. The optimal time sharing achieves significant gains compared to equal time allocation between the EH and IT phases.Comment: Proceedings of the 2015 IEEE International Conference on Communications (IEEE ICC 2015), 8-12 June 2015, London, U

    Non-convex Optimization for Resource Allocation in Wireless Device-to-Device Communications

    Get PDF
    Device-to-device (D2D) communication is considered one of the key frameworks to provide suitable solutions for the exponentially increasing data tra c in mobile telecommunications. In this PhD Thesis, we focus on the resource allocation for underlay D2D communications which often results in a non-convex optimization problem that is computationally demanding. We have also reviewed many of the works on D2D underlay communications and identi ed some of the limitations that were not handled previously, which has motivated our works in this Thesis. Our rst works focus on the joint power allocation and channel assignment problem in the D2D underlay communication scenario for a unicast single-input and single-output (SISO) cellular network in either uplink or downlink spectrums. These works also consider several degrees of uncertainty in the channel state information (CSI), and propose suitable measures to guarantee the quality of service (QoS) and reliability under those conditions. Moreover, we also present a few algorithms that can be used to jointly assign uplink and downlink spectrum to D2D pairs. We also provide methods to decentralize those algorithms with convergence guarantees and analyze their computational complexity. We also consider both cases with no interference among D2D pairs and cases with interference among D2D pairs. Additionally, we propose the formulation of an optimization objective function that combines the network rate with a penalty function that penalizes unfair channel allocations where most of the channels are assigned to only a few D2D pairs. The next contributions of this Thesis focus on extending the previous works to cellular networks with multiple-input and multiple-output (MIMO) capabilities and networks with D2D multicast groups. We also present several methods to accommodate various degrees of uncertainty in the CSI and also guarantee di erent measures of QoS and reliability. All our algorithms are evaluated extensively through extensive numerical experiments using the Matlab simulation environment. All of these results show favorable performance, as compared to the existing state-of-the-art alternatives.publishedVersio

    Outage Analysis of Energy Harvested Relay-Aided Device-to-Device Communications in Nakagami Channel

    Get PDF
    In this paper, we obtain a low-complexity closed-form formula for the outage probability of the energy-harvested decode-and-forward (DF) relay-aided underlay Device-to-device (D2D) communications in Nakagami fading channel. By proposing a new idea which finds the power splitting factor in simultaneous wireless information and power transfer (SWIPT) energy-harvesting system such that the transmit power of the relay node in the second time slot is fixed in a pre-defined value, the obtained closed-form expression is valid for both energy-harvested and non-energy-harvested scenarios. This formula is based on n-point generalized Gauss-Laguerre and m-point Gauss-Legendre solutions. It is shown that n is more effective than m for reducing the formula complexity. In addition to a good agreement between the simulation results and numerical analysis based on normalized mean square error (NMSE), it is indicated that (n, m)=(1, 4) and (n, m)=(1, 2) are the appropriate choices, respectively for 0.5≤ µ <0.7 and µ ≥0.7, where µ is the fading factor. As shown in this investigation, increasing the average distance between D2D pairs and cellular user (lower interference), is the reason for decreasing the outage probability. Furthermore, it is clear that increasing the Nakagami fading factor is the reason for decreasing the outage probability

    Robust Transmit Beamforming for Underlay D2D Communications on Multiple Channels

    Get PDF
    Author´s accepted manuscript (postprint).© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.publishedVersio
    • …
    corecore