6 research outputs found

    Outage Capacity of Opportunistic Beamforming with Random User Locations

    Full text link
    This paper studies the outage capacity of a network consisting of a multitude of heterogenous mobile users, and operating according to the classical opportunistic beamforming framework. The base station is located at the center of the cell, which is modeled as a disk of finite radius. The random user locations are modeled using a homogenous spatial Poisson point process. The received signals are impaired by both fading and location dependent path loss. For this system, we first derive an expression for the beam outage probability. This expression holds for all path loss models that satisfy some mild conditions. Then, we focus on two specific path loss models (i.e., an unbounded model and a more realistic bounded one) to illustrate the applications of our results. In the large system limit where the cell radius tends to infinity, the beam outage capacity and its scaling behavior are derived for the selected specific path loss models. It is shown that the beam outage capacity scales logarithmically for the unbounded model. On the other hand, this scaling behavior becomes double logarithmic for the bounded model. Intuitive explanations are provided as to why we observe different scaling behavior for different path loss models. Numerical evaluations are performed to give further insights, and to illustrate the applicability of the outage capacity results even to a cell having a small finite radius.Comment: To appear in Globecom 2013, Atlanta, US

    Transmission Rank Selection for Opportunistic Beamforming with Quality of Service Constraints

    Full text link
    In this paper, we consider a multi-cell multi-user MISO broadcast channel. The system operates according to the opportunistic beamforming framework in a multi-cell environment with variable number of transmit beams (may alternatively be referred as the transmission rank) at each base station. The maximum number of co-scheduled users in a cell is equal to its transmission rank, thus increasing it will have the effect of increasing the multiplexing gain. However, this will simultaneously increase the amount of interference in the network, which will decrease the rate of communication. This paper focuses on optimally setting the transmission rank at each base station such that a set of Quality of Service (QoS) constraints, that will ensure a guaranteed minimum rate per beam at each base station, is not violated. Expressions representing the achievable region of transmission ranks are obtained considering different network settings. The achievable transmission rank region consists of all achievable transmission rank tuples that satisfy the QoS constraints. Numerical results are also presented to provide further insights on the feasibility problem.Comment: To appear in IEEE ICC 2014, Sydney, Australi

    Secure Transmission Design With Feedback Compression for the Internet of Things

    Get PDF
    ARC Discovery Projects Grant DP150103905
    corecore