947 research outputs found

    Design and Implementation of MPICH2 over InfiniBand with RDMA Support

    Full text link
    For several years, MPI has been the de facto standard for writing parallel applications. One of the most popular MPI implementations is MPICH. Its successor, MPICH2, features a completely new design that provides more performance and flexibility. To ensure portability, it has a hierarchical structure based on which porting can be done at different levels. In this paper, we present our experiences designing and implementing MPICH2 over InfiniBand. Because of its high performance and open standard, InfiniBand is gaining popularity in the area of high-performance computing. Our study focuses on optimizing the performance of MPI-1 functions in MPICH2. One of our objectives is to exploit Remote Direct Memory Access (RDMA) in Infiniband to achieve high performance. We have based our design on the RDMA Channel interface provided by MPICH2, which encapsulates architecture-dependent communication functionalities into a very small set of functions. Starting with a basic design, we apply different optimizations and also propose a zero-copy-based design. We characterize the impact of our optimizations and designs using microbenchmarks. We have also performed an application-level evaluation using the NAS Parallel Benchmarks. Our optimized MPICH2 implementation achieves 7.6 μ\mus latency and 857 MB/s bandwidth, which are close to the raw performance of the underlying InfiniBand layer. Our study shows that the RDMA Channel interface in MPICH2 provides a simple, yet powerful, abstraction that enables implementations with high performance by exploiting RDMA operations in InfiniBand. To the best of our knowledge, this is the first high-performance design and implementation of MPICH2 on InfiniBand using RDMA support.Comment: 12 pages, 17 figure

    The End of a Myth: Distributed Transactions Can Scale

    Full text link
    The common wisdom is that distributed transactions do not scale. But what if distributed transactions could be made scalable using the next generation of networks and a redesign of distributed databases? There would be no need for developers anymore to worry about co-partitioning schemes to achieve decent performance. Application development would become easier as data placement would no longer determine how scalable an application is. Hardware provisioning would be simplified as the system administrator can expect a linear scale-out when adding more machines rather than some complex sub-linear function, which is highly application specific. In this paper, we present the design of our novel scalable database system NAM-DB and show that distributed transactions with the very common Snapshot Isolation guarantee can indeed scale using the next generation of RDMA-enabled network technology without any inherent bottlenecks. Our experiments with the TPC-C benchmark show that our system scales linearly to over 6.5 million new-order (14.5 million total) distributed transactions per second on 56 machines.Comment: 12 page
    • …
    corecore