27,937 research outputs found

    Oscillation energy based sensitivity analysis and control for multi-mode oscillation systems

    Full text link
    This paper describes a novel approach to analyze and control systems with multi-mode oscillation problems. Traditional single dominant mode analysis fails to provide effective control actions when several modes have similar low damping ratios. This work addresses this problem by considering all modes in the formulation of the system kinetic oscillation energy. The integral of energy over time defines the total action as a measure of dynamic performance, and its sensitivity allows comparing the performance of different actuators/locations in the system to select the most effective one to damp the oscillation energy. Time domain simulations in the IEEE 9-bus system and IEEE 39-bus system verify the findings obtained by the oscillation energy based analysis. Applications of the proposed method in control and system planning are discussed.Comment: Conference paper, IEEE PESGM 201

    Further studies on relic neutrino asymmetry generation I: the adiabatic Boltzmann limit, non-adiabatic evolution, and the classical harmonic oscillator analogue of the quantum kinetic equations

    Get PDF
    We demonstrate that the relic neutrino asymmetry evolution equation derived from the quantum kinetic equations (QKEs) reduces to the Boltzmann limit that is dependent only on the instantaneous neutrino number densities, in the adiabatic limit in conjunction with sufficient damping. An original physical and/or geometrical interpretation of the adiabatic approximation is given, which serves as a convenient visual aid to understanding the sharply contrasting resonance behaviours exhibited by the neutrino ensemble in opposing collision regimes. We also present a classical analogue for the evolution of the difference in να\nu_{\alpha} and νs\nu_s number densities which, in the Boltzmann limit, is akin to the behaviour of the generic reaction A⇌BA \rightleftharpoons B with equal forward and reverse reaction rate constants. A new characteristic quantity, the matter and collision-affected mixing angle of the neutrino ensemble, is identified here for the first time. The role of collisions is revealed to be twofold: (i) to wipe out the inherent oscillations, and (ii) to equilibrate the να\nu_{\alpha} and νs\nu_s number densities in the long run. Studies on non-adiabatic evolution and its possible relation to rapid oscillations in lepton number generation also feature, with the introduction of an adiabaticity parameter for collision-affected oscillations.Comment: RevTeX, 38 pages including 8 embedded figure

    Using Effective Generator Impedance for Forced Oscillation Source Location

    Full text link
    Locating the sources of forced low-frequency oscillations in power systems is an important problem. A number of proposed methods demonstrate their practical usefulness, but many of them rely on strong modeling assumptions and provide poor performance in certain cases for reasons still not well understood. This paper proposes a systematic method for locating the source of a forced oscillation by considering a generator's response to fluctuations of its terminal voltages and currents. It is shown that a generator can be represented as an effective admittance matrix with respect to low-frequency oscillations, and an explicit form for this matrix, for various generator models, is derived. Furthermore, it is shown that a source generator, in addition to its effective admittance, is characterized by the presence of an effective current source thus giving a natural qualitative distinction between source and nonsource generators. Detailed descriptions are given of a source detection procedure based on this developed representation, and the method's effectiveness is confirmed by simulations on the recommended testbeds (eg. WECC 179-bus system). This method is free of strong modeling assumptions and is also shown to be robust in the presence of measurement noise and generator parameter uncertainty.Comment: 13 page

    Energy Conservative Limit Cycle Oscillations

    Get PDF
    This paper shows how globally attractive limit cycle oscillations can be induced in a system with a nonlinear feedback element. Based on the same principle as the Van der Pol oscillator, the feedback behaves as a negative damping for low velocities but as an ordinary damper for high velocities. This nonlinear damper can be physically implemented with a continuous variable transmission and a spring, storing energy in the spring when the damping is positive and reusing it when the damping is negative. The resulting mechanism has a natural limit cycle oscillation that is energy conservative and can be used for the development of robust, dynamic walking robots
    • …
    corecore