4,991 research outputs found

    Moving bumps in theta neuron networks

    Full text link
    We consider large networks of theta neurons on a ring, synaptically coupled with an asymmetric kernel. Such networks support stable "bumps" of activity, which move along the ring if the coupling kernel is asymmetric. We investigate the effects of the kernel asymmetry on the existence, stability and speed of these moving bumps using continuum equations formally describing infinite networks. Depending on the level of heterogeneity within the network we find complex sequences of bifurcations as the amount of asymmetry is varied, in strong contrast to the behaviour of a classical neural field model.Comment: To appear in Chao

    Amplitude Death: The emergence of stationarity in coupled nonlinear systems

    Full text link
    When nonlinear dynamical systems are coupled, depending on the intrinsic dynamics and the manner in which the coupling is organized, a host of novel phenomena can arise. In this context, an important emergent phenomenon is the complete suppression of oscillations, formally termed amplitude death (AD). Oscillations of the entire system cease as a consequence of the interaction, leading to stationary behavior. The fixed points that the coupling stabilizes can be the otherwise unstable fixed points of the uncoupled system or can correspond to novel stationary points. Such behaviour is of relevance in areas ranging from laser physics to the dynamics of biological systems. In this review we discuss the characteristics of the different coupling strategies and scenarios that lead to AD in a variety of different situations, and draw attention to several open issues and challenging problems for further study.Comment: Physics Reports (2012

    Effects of non-resonant interaction in ensembles of phase oscillators

    Full text link
    We consider general properties of groups of interacting oscillators, for which the natural frequencies are not in resonance. Such groups interact via non-oscillating collective variables like the amplitudes of the order parameters defined for each group. We treat the phase dynamics of the groups using the Ott-Antonsen ansatz and reduce it to a system of coupled equations for the order parameters. We describe different regimes of co-synchrony in the groups. For a large number of groups, heteroclinic cycles, corresponding to a sequental synchronous activity of groups, and chaotic states, where the order parameters oscillate irregularly, are possible.Comment: 21 pages, 7 fig
    • …
    corecore