2 research outputs found

    Web Shopping Expert Systems Using New Interval Type-2 Fuzzy Reasoning

    Get PDF
    Finding a product with high quality and reasonable price online is a difficult task due to the fuzzy nature of data and queries. In order to handle the fuzzy problem, a new type-2 fuzzy reasoning based decision support system, the Web Shopping Expert for online users is proposed. In the Web Shopping Expert, an interval type-2 fuzzy logic system is used and a fuzzy output can be obtained using the up-low limit technique, which offers an opportunity to directly employ all the rules and methods of the type-1 fuzzy sets onto the type-2 fuzzy sets. To achieve the best performance the fuzzy inference system is optimized by the least square and numerical method. The key advantages of the least square method are the efficient use of samples and the simplicity of the implementation. The Web Shopping Expert based on the interval type-2 fuzzy inference system provides more reasonable conclusions for online users

    Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling

    Get PDF
    This paper aims at providing an in-depth overview of designing interpretable fuzzy inference models from data within a unified framework. The objective of complex system modelling is to develop reliable and understandable models for human being to get insights into complex real-world systems whose first-principle models are unknown. Because system behaviour can be described naturally as a series of linguistic rules, data-driven fuzzy modelling becomes an attractive and widely used paradigm for this purpose. However, fuzzy models constructed from data by adaptive learning algorithms usually suffer from the loss of model interpretability. Model accuracy and interpretability are two conflicting objectives, so interpretation preservation during adaptation in data-driven fuzzy system modelling is a challenging task, which has received much attention in fuzzy system modelling community. In order to clearly discriminate the different roles of fuzzy sets, input variables, and other components in achieving an interpretable fuzzy model, a taxonomy of fuzzy model interpretability is first proposed in terms of low-level interpretability and high-level interpretability in this paper. The low-level interpretability of fuzzy models refers to fuzzy model interpretability achieved by optimizing the membership functions in terms of semantic criteria on fuzzy set level, while the high-level interpretability refers to fuzzy model interpretability obtained by dealing with the coverage, completeness, and consistency of the rules in terms of the criteria on fuzzy rule level. Some criteria for low-level interpretability and high-level interpretability are identified, respectively. Different data-driven fuzzy modelling techniques in the literature focusing on the interpretability issues are reviewed and discussed from the perspective of low-level interpretability and high-level interpretability. Furthermore, some open problems about interpretable fuzzy models are identified and some potential new research directions on fuzzy model interpretability are also suggested. Crown Copyright © 2008
    corecore