21,584 research outputs found

    Time-frequency transforms of white noises and Gaussian analytic functions

    Get PDF
    A family of Gaussian analytic functions (GAFs) has recently been linked to the Gabor transform of white Gaussian noise [Bardenet et al., 2017]. This answered pioneering work by Flandrin [2015], who observed that the zeros of the Gabor transform of white noise had a very regular distribution and proposed filtering algorithms based on the zeros of a spectrogram. The mathematical link with GAFs provides a wealth of probabilistic results to inform the design of such signal processing procedures. In this paper, we study in a systematic way the link between GAFs and a class of time-frequency transforms of Gaussian white noises on Hilbert spaces of signals. Our main observation is a conceptual correspondence between pairs (transform, GAF) and generating functions for classical orthogonal polynomials. This correspondence covers some classical time-frequency transforms, such as the Gabor transform and the Daubechies-Paul analytic wavelet transform. It also unveils new windowed discrete Fourier transforms, which map white noises to fundamental GAFs. All these transforms may thus be of interest to the research program `filtering with zeros'. We also identify the GAF whose zeros are the extrema of the Gabor transform of the white noise and derive their first intensity. Moreover, we discuss important subtleties in defining a white noise and its transform on infinite dimensional Hilbert spaces. Finally, we provide quantitative estimates concerning the finite-dimensional approximations of these white noises, which is of practical interest when it comes to implementing signal processing algorithms based on GAFs.Comment: to appear in Applied and Computational Harmonic Analysi

    Orthogonal polynomial ensembles in probability theory

    Full text link
    We survey a number of models from physics, statistical mechanics, probability theory and combinatorics, which are each described in terms of an orthogonal polynomial ensemble. The most prominent example is apparently the Hermite ensemble, the eigenvalue distribution of the Gaussian Unitary Ensemble (GUE), and other well-known ensembles known in random matrix theory like the Laguerre ensemble for the spectrum of Wishart matrices. In recent years, a number of further interesting models were found to lead to orthogonal polynomial ensembles, among which the corner growth model, directed last passage percolation, the PNG droplet, non-colliding random processes, the length of the longest increasing subsequence of a random permutation, and others. Much attention has been paid to universal classes of asymptotic behaviors of these models in the limit of large particle numbers, in particular the spacings between the particles and the fluctuation behavior of the largest particle. Computer simulations suggest that the connections go even farther and also comprise the zeros of the Riemann zeta function. The existing proofs require a substantial technical machinery and heavy tools from various parts of mathematics, in particular complex analysis, combinatorics and variational analysis. Particularly in the last decade, a number of fine results have been achieved, but it is obvious that a comprehensive and thorough understanding of the matter is still lacking. Hence, it seems an appropriate time to provide a surveying text on this research area.Comment: Published at http://dx.doi.org/10.1214/154957805100000177 in the Probability Surveys (http://www.i-journals.org/ps/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On Poincare and logarithmic Sobolev inequalities for a class of singular Gibbs measures

    Full text link
    This note, mostly expository, is devoted to Poincar{\'e} and log-Sobolev inequalities for a class of Boltzmann-Gibbs measures with singular interaction. Such measures allow to model one-dimensional particles with confinement and singular pair interaction. The functional inequalities come from convexity. We prove and characterize optimality in the case of quadratic confinement via a factorization of the measure. This optimality phenomenon holds for all beta Hermite ensembles including the Gaussian unitary ensemble, a famous exactly solvable model of random matrix theory. We further explore exact solvability by reviewing the relation to Dyson-Ornstein-Uhlenbeck diffusion dynamics admitting the Hermite-Lassalle orthogonal polynomials as a complete set of eigenfunctions. We also discuss the consequence of the log-Sobolev inequality in terms of concentration of measure for Lipschitz functions such as maxima and linear statistics.Comment: Minor improvements. To appear in Geometric Aspects of Functional Analysis -- Israel Seminar (GAFA) 2017-2019", Lecture Notes in Mathematics 225
    corecore