156 research outputs found

    Orthogonal Time Frequency Space for Integrated Sensing and Communication: A Survey

    Full text link
    Sixth-generation (6G) wireless communication systems, as stated in the European 6G flagship project Hexa-X, are anticipated to feature the integration of intelligence, communication, sensing, positioning, and computation. An important aspect of this integration is integrated sensing and communication (ISAC), in which the same waveform is used for both systems both sensing and communication, to address the challenge of spectrum scarcity. Recently, the orthogonal time frequency space (OTFS) waveform has been proposed to address OFDM's limitations due to the high Doppler spread in some future wireless communication systems. In this paper, we review existing OTFS waveforms for ISAC systems and provide some insights into future research. Firstly, we introduce the basic principles and a system model of OTFS and provide a foundational understanding of this innovative technology's core concepts and architecture. Subsequently, we present an overview of OTFS-based ISAC system frameworks. We provide a comprehensive review of recent research developments and the current state of the art in the field of OTFS-assisted ISAC systems to gain a thorough understanding of the current landscape and advancements. Furthermore, we perform a thorough comparison between OTFS-enabled ISAC operations and traditional OFDM, highlighting the distinctive advantages of OTFS, especially in high Doppler spread scenarios. Subsequently, we address the primary challenges facing OTFS-based ISAC systems, identifying potential limitations and drawbacks. Then, finally, we suggest future research directions, aiming to inspire further innovation in the 6G wireless communication landscape

    A Phase-Coded Time-Domain Interleaved OTFS Waveform with Improved Ambiguity Function

    Full text link
    Integrated sensing and communication (ISAC) is a significant application scenario in future wireless communication networks, and sensing capability of a waveform is always evaluated by the ambiguity function. To enhance the sensing performance of the orthogonal time frequency space (OTFS) waveform, we propose a novel time-domain interleaved cyclic-shifted P4-coded OTFS (TICP4-OTFS) with improved ambiguity function. TICP4-OTFS can achieve superior autocorrelation features in both the time and frequency domains by exploiting the multicarrier-like form of OTFS after interleaved and the favorable autocorrelation attributes of the P4 code. Furthermore, we present the vectorized formulation of TICP4-OTFS modulation as well as its signal structure in each domain. Numerical simulations show that our proposed TICP4-OTFS waveform outperforms OTFS with a narrower mainlobe as well as lower and more distant sidelobes in terms of delay and Doppler-dimensional ambiguity functions, and an instance of range estimation using pulse compression is illustrated to exhibit the proposed waveform\u2019s greater resolution. Besides, TICP4-OTFS achieves better performance of bit error rate for communication in low signal-to-noise ratio (SNR) scenarios.Comment: This paper has been accepted by 2023 IEEE Globecom Workshops (GC Wkshps): Workshop on Integrated Sensing and Communications for Internet of Thing

    AFDM vs OTFS: A Comparative Study of Promising Waveforms for ISAC in Doubly-Dispersive Channels

    Full text link
    This white paper aims to briefly describe a proposed article that will provide a thorough comparative study of waveforms designed to exploit the features of doubly-dispersive channels arising in heterogeneous high-mobility scenarios as expected in the beyond fifth generation (B5G) and sixth generation (6G), in relation to their suitability to integrated sensing and communications (ISAC) systems. In particular, the full article will compare the well-established delay-Doppler domain-based orthognal time frequency space (OTFS) and the recently proposed chirp domain-based affine frequency division multiplexing (AFDM) waveforms. Both these waveforms are designed based on a full delay- Doppler representation of the time variant (TV) multipath channel, yielding not only robustness and orthogonality of information symbols in high-mobility scenarios, but also a beneficial implication for environment target detection through the inherent capability of estimating the path delay and Doppler shifts, which are standard radar parameters. These modulation schemes are distinct candidates for ISAC in B5G/6G systems, such that a thorough study of their advantages, shortcomings, implications to signal processing, and performance of communication and sensing functions are well in order. In light of the above, a sample of the intended contribution (Special Issue paper) is provided below

    Integrated Sensing and Communication Signals Toward 5G-A and 6G: A Survey

    Full text link
    Integrated sensing and communication (ISAC) has the advantages of efficient spectrum utilization and low hardware cost. It is promising to be implemented in the fifth-generation-advanced (5G-A) and sixth-generation (6G) mobile communication systems, having the potential to be applied in intelligent applications requiring both communication and high-accurate sensing capabilities. As the fundamental technology of ISAC, ISAC signal directly impacts the performance of sensing and communication. This article systematically reviews the literature on ISAC signals from the perspective of mobile communication systems, including ISAC signal design, ISAC signal processing algorithms and ISAC signal optimization. We first review the ISAC signal design based on 5G, 5G-A and 6G mobile communication systems. Then, radar signal processing methods are reviewed for ISAC signals, mainly including the channel information matrix method, spectrum lines estimator method and super resolution method. In terms of signal optimization, we summarize peak-to-average power ratio (PAPR) optimization, interference management, and adaptive signal optimization for ISAC signals. This article may provide the guidelines for the research of ISAC signals in 5G-A and 6G mobile communication systems.Comment: 25 pages, 13 figures, 8 tables. IEEE Internet of Things Journal, 202

    Radar Sensing via OTFS Signaling: A Delay Doppler Signal Processing Perspective

    Full text link
    The recently proposed orthogonal time frequency space (OTFS) modulation multiplexes data symbols in the delay-Doppler (DD) domain. Since the range and velocity, which can be derived from the delay and Doppler shifts, are the parameters of interest for radar sensing, it is natural to consider implementing DD signal processing for radar sensing. In this paper, we investigate the potential connections between the OTFS and DD domain radar signal processing. Our analysis shows that the range-Doppler matrix computing process in radar sensing is exactly the demodulation of OTFS with a rectangular pulse shaping filter. Furthermore, we propose a two-dimensional (2D) correlation-based algorithm to estimate the fractional delay and Doppler parameters for radar sensing. Simulation results show that the proposed algorithm can efficiently obtain the delay and Doppler shifts associated with multiple targets.Comment: ICC-2023 Accepte

    Robust NOMA-assisted OTFS-ISAC Network Design with 3D Motion Prediction Topology

    Full text link
    This paper proposes a novel non-orthogonal multiple access (NOMA)-assisted orthogonal time-frequency space (OTFS)-integrated sensing and communication (ISAC) network, which uses unmanned aerial vehicles (UAVs) as air base stations to support multiple users. By employing ISAC, the UAV extracts position and velocity information from the user's echo signals, and non-orthogonal power allocation is conducted to achieve a superior achievable rate. A 3D motion prediction topology is used to guide the NOMA transmission for multiple users, and a robust power allocation solution is proposed under perfect and imperfect channel estimation for Maxi-min Fairness (MMF) and Maximum sum-Rate (SR) problems. Simulation results demonstrate the superiority of the proposed NOMA-assisted OTFS-ISAC system over other systems in terms of achievable rate under both perfect and imperfect channel conditions with the aid of 3D motion prediction topology

    Sensing Aided OTFS Channel Estimation for Massive MIMO Systems

    Full text link
    Orthogonal time frequency space (OTFS) modulation has the potential to enable robust communications in highly-mobile scenarios. Estimating the channels for OTFS systems, however, is associated with high pilot signaling overhead that scales with the maximum delay and Doppler spreads. This becomes particularly challenging for massive MIMO systems where the overhead also scales with the number of antennas. An important observation however is that the delay, Doppler, and angle of departure/arrival information are directly related to the distance, velocity, and direction information of the mobile user and the various scatterers in the environment. With this motivation, we propose to leverage radar sensing to obtain this information about the mobile users and scatterers in the environment and leverage it to aid the OTFS channel estimation in massive MIMO systems. As one approach to realize our vision, this paper formulates the OTFS channel estimation problem in massive MIMO systems as a sparse recovery problem and utilizes the radar sensing information to determine the support (locations of the non-zero delay-Doppler taps). The proposed radar sensing aided sparse recovery algorithm is evaluated based on an accurate 3D ray-tracing framework with co-existing radar and communication data. The results show that the developed sensing-aided solution consistently outperforms the standard sparse recovery algorithms (that do not leverage radar sensing data) and leads to a significant reduction in the pilot overhead, which highlights a promising direction for OTFS based massive MIMO systems.Comment: submitted to IEE
    corecore