74 research outputs found

    Analysis of the IEEE 802.15.4a ultra wideband physical layer through wireless sensor network simulations in OMNET++

    Get PDF
    Wireless Sensor Networks are the main representative of pervasive computing in large-scale physical environments. These networks consist of a large number of small, wireless devices embedded in the physical world to be used for surveillance, environmental monitoring or other data capture, processing and transfer applications. Ultra wideband has emerged as one of the newest and most promising concepts for wireless technology. Considering all its advantages it seems a likely communication technology candidate for future wireless sensor networks. This paper considers the viability of ultra wideband technology in wireless sensor networks by employing an IEEE 802.15.4a low-rate ultra wideband physical layer model in the OMNET++ simulation environment. An elaborate investigation into the inner workings of the IEEE 802.15.4a UWB physical layer is performed. Simulation experiments are used to provide a detailed analysis of the performance of the IEEE 802.15.4a UWB physical layer over several communication distances. A proposal for a cognitive, adaptive communication approach to optimize for speed and distance is also presented. AFRIKAANS : Draadlose Sensor Netwerke is die hoof verteenwoordiger vir deurdringende rekenarisering in groot skaal fisiese omgewings. Hierdie tipe netwerke bestaan uit ’n groot aantal klein, draadlose apparate wat in die fisiese wêreld ingesluit word vir die doel van bewaking, omgewings monitering en vele ander data opvang, verwerk en oordrag applikasies. Ultra wyeband het opgestaan as een van die nuutste en mees belowend konsepte vir draadlose kommunikasie tegnologie. As al die voordele van dié kommunikasie tegnologie in ag geneem word, blyk dit om ’n baie goeie kandidaat te wees vir gebruik in toekomstige draadlose sensor netwerke. Hierdie verhandeling oorweeg die vatbaarheid van die gebruik van die ultra wyeband tegnologie in draadlose sensor netwerke deur ’n IEEE 802.15.4a lae-tempo ultra wyeband fisiese laag model in die OMNET++ simulasie omgewing toe te pas. ’n Breedvoerige ondersoek word geloots om die fyn binneste werking van die IEEE 802.15.4a UWB fisiese laag te verstaan. Simulasie eksperimente word gebruik om ’n meer gedetaileerde analiese omtrent die werkverrigting van die IEEE 802.15.4a UWB fisiese laag te verkry oor verskillende kommunikasie afstande. ’n Voorstel vir ’n omgewings bewuste, aanpasbare kommunikasie tegniek word bespreek met die doel om die spoed en afstand van kommunikasie te optimiseer.Dissertation (MEng)--University of Pretoria, 2011.Electrical, Electronic and Computer Engineeringunrestricte

    Ultra Wideband Communications: from Analog to Digital

    Get PDF
    Ultrabreitband-Signale (Ultra Wideband [UWB]) können einen signifikanten Nutzen im Bereich drahtloser Kommunikationssysteme haben. Es sind jedoch noch einige Probleme offen, die durch Systemdesigner und Wissenschaftler gelöst werden müssen. Ein Funknetzsystem mit einer derart großen Bandbreite ist normalerweise auch durch eine große Anzahl an Mehrwegekomponenten mit jeweils verschiedenen Pfadamplituden gekennzeichnet. Daher ist es schwierig, die zeitlich verteilte Energie effektiv zu erfassen. Außerdem ist in vielen Fällen der naheliegende Ansatz, ein kohärenter Empfänger im Sinne eines signalangepassten Filters oder eines Korrelators, nicht unbedingt die beste Wahl. In der vorliegenden Arbeit wird dabei auf die bestehende Problematik und weitere Lösungsmöglichkeiten eingegangen. Im ersten Abschnitt geht es um „Impulse Radio UWB”-Systeme mit niedriger Datenrate. Bei diesen Systemen kommt ein inkohärenter Empfänger zum Einsatz. Inkohärente Signaldetektion stellt insofern einen vielversprechenden Ansatz dar, als das damit aufwandsgünstige und robuste Implementierungen möglich sind. Dies trifft vor allem in Anwendungsfällen wie den von drahtlosen Sensornetzen zu, wo preiswerte Geräte mit langer Batterielaufzeit nötigsind. Dies verringert den für die Kanalschätzung und die Synchronisation nötigen Aufwand, was jedoch auf Kosten der Leistungseffizienz geht und eine erhöhte Störempfindlichkeit gegenüber Interferenz (z.B. Interferenz durch mehrere Nutzer oder schmalbandige Interferenz) zur Folge hat. Um die Bitfehlerrate der oben genannten Verfahren zu bestimmen, wurde zunächst ein inkohärenter Combining-Verlust spezifiziert, welcher auftritt im Gegensatz zu kohärenter Detektion mit Maximum Ratio Multipath Combining. Dieser Verlust hängt von dem Produkt aus der Länge des Integrationsfensters und der Signalbandbreite ab. Um den Verlust durch inkohärentes Combining zu reduzieren und somit die Leistungseffizienz des Empfängers zu steigern, werden verbesserte Combining-Methoden für Mehrwegeempfang vorgeschlagen. Ein analoger Empfänger, bei dem der Hauptteil des Mehrwege-Combinings durch einen „Integrate and Dump”-Filter implementiert ist, wird für UWB-Systeme mit Zeit-Hopping gezeigt. Dabei wurde die Einsatzmöglichkeit von dünn besetzten Codes in solchen System diskutiert und bewertet. Des Weiteren wird eine Regel für die Code-Auswahl vorgestellt, welche die Stabilität des Systems gegen Mehrnutzer-Störungen sicherstellt und gleichzeitig den Verlust durch inkohärentes Combining verringert. Danach liegt der Fokus auf digitalen Lösungen bei inkohärenter Demodulation. Im Vergleich zum Analogempfänger besitzt ein Digitalempfänger einen Analog-Digital-Wandler im Zeitbereich gefolgt von einem digitalen Optimalfilter. Der digitale Optimalfilter dekodiert den Mehrfachzugriffscode kohärent und beschränkt das inkohärente Combining auf die empfangenen Mehrwegekomponenten im Digitalbereich. Es kommt ein schneller Analog-Digital-Wandler mit geringer Auflösung zum Einsatz, um einen vertretbaren Energieverbrauch zu gewährleisten. Diese Digitaltechnik macht den Einsatz langer Analogverzögerungen bei differentieller Demodulation unnötig und ermöglicht viele Arten der digitalen Signalverarbeitung. Im Vergleich zur Analogtechnik reduziert sie nicht nur den inkohärenten Combining-Verlust, sonder zeigt auch eine stärkere Resistenz gegenüber Störungen. Dabei werden die Auswirkungen der Auflösung und der Abtastrate der Analog-Digital-Umsetzung analysiert. Die Resultate zeigen, dass die verminderte Effizienz solcher Analog-Digital-Wandler gering ausfällt. Weiterhin zeigt sich, dass im Falle starker Mehrnutzerinterferenz sogar eine Verbesserung der Ergebnisse zu beobachten ist. Die vorgeschlagenen Design-Regeln spezifizieren die Anwendung der Analog-Digital-Wandler und die Auswahl der Systemparameter in Abhängigkeit der verwendeten Mehrfachzugriffscodes und der Modulationsart. Wir zeigen, wie unter Anwendung erweiterter Modulationsverfahren die Leistungseffizienz verbessert werden kann und schlagen ein Verfahren zur Unterdrückung schmalbandiger Störer vor, welches auf Soft Limiting aufbaut. Durch die Untersuchungen und Ergebnissen zeigt sich, dass inkohärente Empfänger in UWB-Kommunikationssystemen mit niedriger Datenrate ein großes Potential aufweisen. Außerdem wird die Auswahl der benutzbaren Bandbreite untersucht, um einen Kompromiss zwischen inkohärentem Combining-Verlust und Stabilität gegenüber langsamen Schwund zu erreichen. Dadurch wurde ein neues Konzept für UWB-Systeme erarbeitet: wahlweise kohärente oder inkohärente Empfänger, welche als UWB-Systeme Frequenz-Hopping nutzen. Der wesentliche Vorteil hiervon liegt darin, dass die Bandbreite im Basisband sich deutlich verringert. Mithin ermöglicht dies einfach zu realisierende digitale Signalverarbeitungstechnik mit kostengünstigen Analog-Digital-Wandlern. Dies stellt eine neue Epoche in der Forschung im Bereich drahtloser Sensorfunknetze dar. Der Schwerpunkt des zweiten Abschnitts stellt adaptiven Signalverarbeitung für hohe Datenraten mit „Direct Sequence”-UWB-Systemen in den Vordergrund. In solchen Systemen entstehen, wegen der großen Anzahl der empfangenen Mehrwegekomponenten, starke Inter- bzw. Intrasymbolinterferenzen. Außerdem kann die Funktionalität des Systems durch Mehrnutzerinterferenz und Schmalbandstörungen deutlich beeinflusst werden. Um sie zu eliminieren, wird die „Widely Linear”-Rangreduzierung benutzt. Dabei verbessert die Rangreduzierungsmethode das Konvergenzverhalten, besonders wenn der gegebene Vektor eine sehr große Anzahl an Abtastwerten beinhaltet (in Folge hoher einer Abtastrate). Zusätzlich kann das System durch die Anwendung der R-linearen Verarbeitung die Statistik zweiter Ordnung des nicht-zirkularen Signals vollständig ausnutzen, was sich in verbesserten Schätzergebnissen widerspiegelt. Allgemeine kann die Methode der „Widely Linear”-Rangreduzierung auch in andern Bereichen angewendet werden, z.B. in „Direct Sequence”-Codemultiplexverfahren (DS-CDMA), im MIMO-Bereich, im Global System for Mobile Communications (GSM) und beim Beamforming.The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by multi-user interference and narrowband interference. It is necessary to develop advanced signal processing techniques at the receiver to suppress these interferences. Part I of this thesis deals with the co-design of signaling schemes and receiver architectures in low data rate impulse radio UWB systems based on non-coherent detection.● We analyze the bit error rate performance of non-coherent detection and characterize a non-coherent combining loss, i.e., a performance penalty with respect to coherent detection with maximum ratio multipath combining. The thorough analysis of this loss is very helpful for the design of transmission schemes and receive techniques innon-coherent UWB communication systems.● We propose to use optical orthogonal codes in a time hopping impulse radio UWB system based on an analog non-coherent receiver. The “analog” means that the major part of the multipath combining is implemented by an integrate and dump filter. The introduced semi-analytical method can help us to easily select the time hopping codes to ensure the robustness against the multi-user interference and meanwhile to alleviate the non-coherent combining loss.● The main contribution of Part I is the proposal of applying fully digital solutions in non-coherent detection. The proposed digital non-coherent receiver is based on a time domain analog-to-digital converter, which has a high speed but a very low resolution to maintain a reasonable power consumption. Compared to its analog counterpart, itnot only significantly reduces the non-coherent combining loss but also offers a higher interference robustness. In particular, the one-bit receiver can effectively suppress strong multi-user interference and is thus advantageous in separating simultaneously operating piconets.The fully digital solutions overcome the difficulty of implementing long analog delay lines and make differential UWB detection possible. They also facilitate the development of various digital signal processing techniques such as multi-user detection and non-coherent multipath combining methods as well as the use of advanced modulationschemes (e.g., M-ary Walsh modulation).● Furthermore, we present a novel impulse radio UWB system based on frequency hopping, where both coherent and non-coherent receivers can be adopted. The key advantage is that the baseband bandwidth can be considerably reduced (e.g., lower than 500 MHz), which enables low-complexity implementation of the fully digital solutions. It opens up various research activities in the application field of wireless sensor networks. Part II of this thesis proposes adaptive widely linear reduced-rank techniques to suppress interferences for high data rate direct sequence UWB systems, where second-order non-circular signals are used. The reduced-rank techniques are designed to improve the convergence performance and the interference robustness especially when the received vector contains a large number of samples (due to a high sampling rate in UWB systems). The widely linear processing takes full advantage of the second-order statistics of the non-circular signals and enhances the estimation performance. The generic widely linear reduced-rank concept also has a great potential in the applications of other systems such as Direct Sequence Code Division Multiple Access (DS-CDMA), Multiple Input Multiple Output (MIMO) system, and Global System for Mobile Communications (GSM), or in other areas such as beamforming

    Bayesian Compressive Sensing Approach For Ultra-wideband Channel Estimation

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2013Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2013Ultra geniş bant dürtü radyosu, kablosuz haberleşme için yeni gelişen bir teknolojidir. Amerika Birleşik Devletleri’nde haberleşme alanında düzenleyici kuruluş olan Federal Haberleşme Komisyonu (FCC) tarafından ultra geniş bant teknolojisiyle ilgili düzenlemeler yapıldıktan sonra öncelikle IEEE 802.15.3 standardı görev grubu, ultra geniş bant dürtü radyolarıyla yüksek hızlı kablosuz kişisel alan ağı uygulamaları için yeni bir fiziksel katman yapısı oluşturulması amacıyla 802.15.3a çalışma grubunu kurmuştur. Ultra geniş bant veri iletiminde iletim uzaklığındaki artış, veri hızında düşüşe neden olur. Bu doğrultuda IEEE 802.15.4 standardı görev grubu, ultra geniş bant dürtü radyolarıyla düşük hızlı fakat iletim uzaklığı daha büyük olan kablosuz kişisel alan ağı uygulamaları için yeni bir fiziksel katman yapısı oluşturulması amacıyla 802.15.4a çalışma grubunu kurmuştur. Bu çalışma grubu, özellikle ortalama bir veri hızı fakat düşük güç tüketimi, karmaşıklık ve maliyet gerektiren sensör ağı uygulamaları gibi uygulamalar üzerinde çalışmalarını yoğunlaştırmıştır. Bu çalışmada IEEE 802.15.4a bünyesindeki çeşitli ultra geniş bant kanal modellerinin kestirimi üzerine odaklanılmıştır. Düşük iletim gücü, düşük maliyetli basit yapı, düz sönümlemeye karşı bağışıklık ve çokyollu bileşenleri iyi bir zaman çözünürlüğüyle ayrı ayrı çözme yeteneği gibi ayırt edici özelliklere sahip olması dolayısıyla ultra geniş bant dürtü radyoları, konumlama, uzaklık belirleme ve düşük veri hızlı uygulamalar için belirlenen kablosuz kişisel alan ağı IEEE 802.15.4a standardının fiziksel katman yapısı olarak seçilmiştir. Ultra geniş bant dürtü radyolarının gerçekleştiriminde karşılaşılan temel zorluklardan biri de kanal kestirimidir. Kanal karakteristikleri hakkında doğru bir bilgiye sahip olmak, haberleşme açısından etkin bir veri iletimi gerçekleştirmek ve sistem performansını artırmak için oldukça önemlidir. Bu nedenle kanal dürtü yanıtı hakkında bilgi edinmek için kanal kestirimi gereklidir. Ultra geniş bant dürtü radyolarının bantgenişliğinin çok fazla olması dolayısıyla, kanal kestiriminde klasik en büyük olabilirlik kestirimcisinin kullanılmasının başlıca dezavantajı, hassas bir kanal kestirimi için Nyquist kriterine göre alıcıdaki örnekleme işleminde çok yüksek örnekleme oranlarına, bir başka ifadeyle çok yüksek hızlı analog-sayısal dönüştürücülere ihtiyaç duyulmasıdır. Bu durum alıcıda devre karmaşıklığının ve maliyetin artmasına neden olur. Yüksek örnekleme oranı gerektiren bu ultra geniş bant kanal kestirimi probleminin üstesinden gelmek için sıkıştırılmış algılama kullanılabilir. Sıkıştırılmış algılama yöntemi, Nyquist oranından önemli ölçüde daha düşük bir örnekleme oranıyla seyrek sinyallerin geri elde edilmesini mümkün kılmaktadır. Seyrek sinyal ifadesi en basit anlamda, bir çok bileşeni sıfır veya sıfıra yakın olan bir başka ifadeyle çok az bileşeni sıfırdan farklı olan sinyaller için kullanılan bir ifadedir. Alıcıda ard arda alınan ultra geniş bant sinyaller kayda değer bir zaman gecikmesiyle alıcıya ulaştığı ve alıcıda ayrı ayrı çözülebildiği için ultra geniş bant çokyollu kanallar için seyrek yapıya sahip olma varsayımı yaygın kabul görmüştür. Ultra geniş bant kanalların bu özelliği nedeniyle sıkıştırılmış algılama yöntemi, yüksek örnekleme oranı probleminin üstesinden gelmek için ultra geniş bant kanal kestiriminde kullanılabilir. Böylece sıkıştırılmış algılama ile alıcının yüksek maliyeti, karmaşıklığı ve güç tüketimi azaltılarak daha basit yapıda bir alıcı, ultra geniş bant sistemde kullanılabilir. Sıkıştırılmış algılama literatüründe, aynı zamanda basis pursuit (BP) olarak da bilinen ℓ1-norm enküçültme ve matching pursuit (MP) olmak üzere seyrek sinyal geri elde ediniminde kullanılan 2 temel algoritma vardır. Literatürde aynı zamanda bu algoritmaların basis pursuit de-noising (BPDN), orthogonal matching pursuit (OMP), stagewise orthogonal matching pursuit (StOMP) ve compressive sampling matching pursuit (CoSaMP) gibi çeşitli türevleri de bulunmaktadır. Son yıllarda Bayes yapının sıkıştırılmış algılama teorisine uygulanmasıyla birlikte, Bayes tabanlı çeşitli sıkıştırılmış algılama algoritmaları, sıkıştırılmış algılama literatürünün bir parçası olmaya başlamıştır. Bu tezde kullanılacak olan Bayes sıkıştırılmış algılama algoritması da bunlardan biridir. Sıkıştırılmış algılamanın bu çeşitli gerçekleştimlerinin arasında Bayes yapının katkısı, ilgili sinyalin istatistiksel özellikleri de göz önünde bulundurulduğundan sinyal geri elde ediniminin iyileştirilmesi açısından önemli bir potansiyel göstermiştir. Bu doğrultuda, Bayes sıkıştırılmış algılama yaklaşımının seyrek ultra geniş bant kanalların kestirimine uygulanması bu çalışma ile gerçekleştirilmiştir. Bu tezde gerçeğe uygun çeşitli ultra geniş bant kanal modelleri için Bayes sıkıştırılmış algılamanın kanal kestirim performansı incelenmiştir. Özellikle Bayes sıkıştırılmış algılama modelini doğrudan etkilediği için analiz açısından önemli olan (i) standartlaştırılmış IEEE 802.15.4a kanal modellerinin seyrek yapılarının, (ii) işaret-gürültü oranı seviyelerinin ve (iii) ölçüm sayısının çeşitli senaryolar için Bayes sıkıştırılmış algılama kanal kestirim performansı üzerindeki etkileri araştırılmış ve bu sonuçlar seyrek sinyal kestirimi için yaygın olarak kullanılan ℓ1-norm enküçültme tabanlı kestirim sonuçlarıyla karşılaştırılmıştır. Sıkıştırılmış algılama tabanlı ultra geniş bant kanal kestiriminde önemli rol oynayan ultra geniş bant kanalların seyrek yapıya sahip olma varsayımı, kanal ortamları incelenerek doğrulanmalıdır. Bu nedenle tezde, çeşitli kanal ortamlarını modelleyerek oluşturulmuş ve ultra geniş bant araştırma çalışmalarında yaygın olarak kullanılan IEEE 802.15.4a standardı bünyesindeki kanal modeli-1, kanal modeli-2, kanal modeli-5 ve kanal modeli-8 olmak üzere 4 farklı kanal modeli göz önünde bulundurulmuştur. Kısaca bu kanal modellerinin belirgin karakteristikleri özetlenecek olursa: Kanal modeli-1, alıcı verici arasında doğrudan görüşün (LOS) olduğu konut içi ortamı temsil eden ve IEEE 802.15.4a standardı bünyesindeki en seyrek yapıya sahip olan kanal modelidir. Kanal modeli-2, alıcı verici arasında doğrudan görüşün olmadığı (NLOS) konut içi ortamı temsil eden kanal modelidir. Kanal modeli-2 de kanal modeli-1 gibi seyrek yapıya sahiptir fakat kanal modeli-1’e kıyasla daha fazla çokyollu bileşene sahiptir. Kanal modeli-1 ve kanal modeli-2’nin temsil ettikleri ortam, kısa mesafedeki güvenlik ve ölçüm sensörlerinin bulunduğu ev ağları için oldukça önemlidir. Kanal modeli-5, alıcı verici arasında doğrudan görüşün olduğu kapalı olmayan (açık alan) ortamı temsil eden kanal modelidir. Kanal modeli-1 ve kanal modeli-2’ye gore oldukça düşük seyrekliğe sahiptir. Bu kanal modelinde çokyollu bileşenler genellikle birkaç küme halindedir. Kanal modeli-8, alıcı verici arasında doğrudan görüşün olmadığı endüstriyel ortamı temsil eden kanal modelidir. Ortam birçok metal yansıtıcılarla dolu geniş fabrika holleri tarafından karakterize edilir. Böylesi bir ortam çok yoğun şekilde çokyollu bileşenlerin oluşmasına neden olur. Bu sebeple kanal modeli-8, seyrek kanal modeli olarak tanımlanamaz. Dolayısıyla bu 4 kanal modeli içinde en az seyrek yapıya sahip kanal modelidir. Kestirim problemleri analizinde, olabilecek en iyi kestirimci hata performansını belirlemek, performans analizi için önemlidir. Performans alt sınırları da bu en iyi kestirimcinin hata performansını gösterdiği için gerçeklenen kestirimcinin hata performansının değerlendirilmesi açısından önemli bir değerlendirme ölçütüdür. Cramér-Rao alt sınırı yanlı olmayan (unbiased) kestirimciler için yaygın olarak kullanılan bir performans sınırıdır. Gerçekte Cramér-Rao alt sınırı, yanlı olmayan kestirimcilerin toplam varyansı üzerindeki bir alt sınırdır. Bununla birlikte yanlı olmayan kestirimciler için ortalama karesel hata varyansa eşit olduğu için, Cramér-Rao alt sınırı aynı zamanda kestirim hatası üzerindeki bir alt sınırdır. Ancak, bu çalışmada ultra geniş bant kanal kestirimi için önerilen Bayes sıkıştırılmış algılama kestirimcisi, Bayes bir kestirimci olmasının yanı sıra aynı zamanda yanlı (biased) bir kestirimcidir. Dolayısıyla kestirim hatası üzerinde değerlendirme ölçütü olarak bir performans alt sınırı belirlemek, Bayes sıkıştırılmış algılama kestirimcisinin performans analizi açısından önemlidir. Literatürde var olan sonsal (Posterior) Cramér-Rao alt sınırı veya Bayes Cramér-Rao alt sınırı, yanlı olmayan Bayes kestirimcilerin kestirim hatası değil de varyansları üzerindeki bir alt sınırdır. Cramér-Rao alt sınırına ek olarak sonsal Cramér-Rao alt sınırı için Bayes yapıdan dolayı kestirilecek parametre vektörüne ilişkin önsel (prior) olasılık dağılımı da göz önünde bulundurulur. Bu nedenle, bu çalışmada doğrusal yanlılık vektörlerine sahip yanlı Bayes kestirimciler için parameter vektörüne ilişkin önsel olasılık dağılımına ek olarak yanlılık terimi de göz önünde bulundurularak ortalama karesel hata üzerinde bir alt sınır sağlanmış ve bu ortalama karesel hata alt sınırı, gerçeklenen Bayes sıkıştırılmış algılama kestirimcisinin kanal kestirim performansıyla karşılaştırılmıştır. Dahası Bayes sıkıştırılmış algılama ve ℓ1-norm enküçültme yöntemlerinin işlemsel verimliliği büyük-O notasyonundan faydalanılarak işlem sürelerine göre incelenmiştir. Çalışma sonucunda, Bayes sıkıştırılmış algılamanın yüksek işaret-gürültü oranı seviyelerinde yeterli sayıda ölçüm ve seyrek kanal modelleri (kanal modeli-1 ve kanal modeli-2) için ℓ1-norm enküçültme yöntemine kıyasla üstün bir performans sergilediği görülmüştür. Ayrıca ℓ1-norm enküçültme yöntemiyle karşılaştırıldığında, Bayes sıkıştırılmış algılama yönteminin işlemsel olarak daha verimli olduğu sonucu çıkarılmıştır. Bu tezin sonuçları göz önünde bulundurulduğunda, farklı sistem gerçekleştirim durumları için Bayes sıkıştırılmış algılama yöntemi veya ℓ1-norm enküçültme yöntemi diğerinin yerine tercih edilebilir.Ultra-Wideband (UWB) impulse radio (IR) is an emerging technology for wireless communications. Owing to distinguishing properties such as having low transmit power, low-cost simple structure, immunity to flat fading and capability of resolving multipath components individually with good time resolution, UWB-IRs have been selected as the physical layer structure of Wireless Personal Area Network (WPAN) standard IEEE 802.15.4a for location and ranging, and low data rate applications. In the implementation of UWB-IRs, one of the main challenges is the channel estimation. Due to ultra-wide bandwidth of UWB-IRs, the main disadvantage of implementing the conventional maximum likelihood (ML) channel estimator is that very high sampling rates, i.e., very high speed analog-to-digital (A/D) converters are required for precise channel estimation. Reconstruction of sparse signals with a sampling rate significantly lower than Nyquist rate is possible with compressive sensing (CS). Due to the sparse structure of UWB channels, compressive sensing can be used for UWB channel estimation in order to overcome the high-rate sampling problem. Among various implementations of CS, the inclusion of Bayesian framework has shown potential to improve signal recovery as statistical information related to signal parameters is considered. Accordingly, the application of Bayesian CS (BCS) approach to the estimation of sparse UWB channels is considered in this study. In this thesis, the channel estimation performance of BCS is studied for various UWB channel models and noise conditions. Specifically, the effects of (i) sparse structure of standardized IEEE 802.15.4a channel models, (ii) signal-to-noise ratio (SNR) regions, and (iii) number of measurements on the BCS channel estimation performance are investigated, and they are compared to the results of ℓ1-norm minimization based estimation, which is widely used for sparse channel estimation. Furthermore, a lower bound on mean-square error (MSE) is provided for the biased BCS estimator and it is compared with the MSE performance of implemented BCS estimator. Moreover, the computation efficiencies of BCS and ℓ1-norm minimization are investigated in terms of computation time by making use of the big-O notation. The study shows that BCS exhibits superior performance at higher SNR regions for adequate number of measurements and sparser channel models (e.g., CM-1 and CM-2). Furthermore, BCS is found to be computationally more efficient compared to ℓ1-norm minimization. Based on the results of this thesis, the BCS method or the ℓ1-norm minimization method can be preferred over the other one for different system implementation conditions.Yüksek LisansM.Sc

    An all-digital transmitter for pulsed ultra-wideband communication

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 91-96).Applications like sensor networks, medical monitoring, and asset tracking have led to a demand for energy-efficient and low-cost wireless transceivers. These types of applications typically require low effective data rates, thus providing an opportunity to employ simple modulation schemes and aggressive duty-cycling. Due to their inherently duty-cycled nature, pulse-based Ultra-Wideband (UWB) systems are amenable to low-power operation by shutting off circuitry during idle mode between pulses. Furthermore, the use of non-coherent UWB signaling greatly simplifies both transmitter and receiver implementations, offering additional energy savings. This thesis presents an all-digital transmitter designed for a non-coherent pulsed UWB system. By exploiting relaxed center frequency tolerances in non-coherent wideband communication, the transmitter synthesizes UWB pulses from an energy efficient, single-ended digital ring oscillator. Dual capacitively-coupled digital power amplifiers (PAs) are used in tandem to generate bipolar phase modulated pulses for spectral scrambling purposes. By maintaining opposite common modes at the output of these PAs during idle mode (i.e. when no pulses are being transmitted), low frequency turn-on and turn-off transients typically associated with single-ended digital circuits driving single-ended antennas are attenuated by up to 12dB. Furthermore, four level digital pulse shaping is employed to attenuate RF side lobes by up to 20dB. The resulting dual power amplifiers achieve FCC compliant operation in the 3.5, 4.0, and 4.5GHz IEEE 802.15.4a bands without the use of any off-chip filters or large passive components. The transmitter is fabricated in a 90nm CMOS process and requires a core area of 0.07mm2. The entirely digital architecture consumes zero static bias current, resulting in an energy efficiency of 17.5pJ/pulse at data rates up to 15.6Mbps.by Patrick Philip Mercier.S.M

    IA-OPD : an optimized orthogonal pulse design scheme for waveform division multiple access UWB systems

    Get PDF
    A new design scheme of orthogonal pulses is proposed for waveform division multiple access ultra-wideband (WDMA-UWB) systems. In order to achieve WDMA and to improve user capacity, the proposed method, termed as interference alignment based orthogonal pulse design (IA-OPD), employs combined orthogonal wavelet functions in the pulse design. The combination coefficients are optimized by using interference alignment. Due to the reciprocity between transmitted and local template signals, the iterative process based on maximum signal to interference plus noise ratio (Max-SINR) criterion can be used to solve the optimization problem in interference alignment. Numerical results demonstrate that the optimized orthogonal pulses provide excellent performances in terms of multiple access interference (MAI) suppression, user capacity and near-far resistance without using any multiuser detection (MUD) techniques. Thus, the IA-OPD scheme can be used to efficiently design a large number of orthogonal pulses for multiuser WDMA-UWB systems with low computational complexity and simple transceiver structure

    Performance Evaluation of 802.15.4 UWB PHY for High Speed Data Rate under IEEE Channel Mode

    Get PDF
    In modern day society the increase of data generation and transfer has been an issue that researchers are working on. This generated and shared data might have a different purpose but one thing is certain, the reception. This communication can cover continents, countries, cities or even just a few meters. For the purpose of the later, personal area networks (PAN) have been created with a main focus to lower the energy consumption. The protocol that is created under IEEE is 802.15.4 and it has multiple applications in the context of next generation sensor networks. This thesis investigates the performance IEEE 802.15.4 UWB PHY for high data rates over IEEE multipath fading channels and introduces receivers aiming to diversity and to mitigate the intersymbol interference (ISI) that might appear. We simulate the protocols highest mandatory data rate over slow, block faded, realistic IEEE channel models such as, residential, office, outdoor and industrial. The simulation includes Reed Solomon (RS) channel coding, optimal successive erasure decoding (SED), and coherent RAKE receivers. We verify that the selective RAKE (sRAKE) perform better than the nonselective RAKE (n-sRAKE) in all environments and also the increase of fingers is mandatory in order to improve performance. In cases with low number of fingers the ISI mitigation techniques like Maximum-Likehood Sequence Estimator (MLSE) & RAKE combination or Maximum Ration Combining (MRC) ISI cancellation receivers, can provide some gain in large delay spread environments. In cases with high number of ingers the MRC received employs its full diversity since the received power is arger than before. Overall the apply of optimal errors and erasures decoding can urther improve the system performance by adding a small gain, lowering existing it Error Probability (BEP) even more.A huge percentage of data has been generated in the last two years and it will grow more, as every one of us is constantly producing and releasing data. The latest years has been an extensive research on capacity maximization, bit rate increment and power optimization. That research lead to the development of various protocols for cellular and personal area networks (PAN), where they each utilizes the frequency spectrum differently. Even if cellular networks have the ability to cover large area, development of multiple personal area networks can be developed for the purpose to offload data from the cellular network. Keeping in mind the research needs, 802.15.4 UWH PHY is a solid candidate when it comes to data transfer in a small area. This protocol offers various mandatory transmission modes that can be selected depending the channel parameters and various data rate needs. Time hopping and spreading sequence offers the existence of multiuser environment where multiple transceivers can co-exist. Overall the complexity, cost and energy consumption for transmission and reception can be kept low, matching the research needs. The main issues regarding 802.15.4 UWH PHY and high speed data rates is first, the energy dispersion of the transmitted symbol to multiple bins and second, the appearance of Inter Symbol Interference (ISI) in high delay profile environments. The solution in the former problem is the necessary implementation of a RAKE receiver. Regarding the latter, literature offers multiple ways to mitigate the ISI but the aim should be to keep the lowest complexity possible regarding the implementation. In this thesis we evaluate the performance of 802.15.4 UWB PHY for high speed data rates under IEEE channel models. Various receivers has been build for the purpose of this thesis, Maximum Ratio Combining (MRC), MRC with Inter Symbol Interference and MLSE & RAKE combination receiver. The MRC is a simple RAKE receiver with maximum diversity, MRC with ISI cancellation is based on the MRC receiver with the ability to mitigate ISI, and MLSE & RAKE combination is an optimum ISI mitigation receiver without the diversity of the MRC

    Ultra-wideband antennas

    Get PDF
    The focus of UWB antenna research activity has matured in recent years and currently mainly concentrates on applications such as biomedicine and security. Early UWB antenna designs were driven by the FCC allocation of spectrum in 2002 and focussed on obtaining wide impedance bandwidths with reasonable group delay characteristics. Many of these were simple planar monopoles antennas with canonical geometries. The emergence of new applications channelled the emphasis towards miniaturisation and integration into devices. This required optimisation of the antenna geometries to ensure that good system performance is achieved from the integrated antenna. Many optimisation techniques are available including the spline technique to generate the outline of the antenna element and ground plane. Simple methods based on genetic algorithms are employed and evolutionary algorithms which are capable of optimising for multiple goals are beneficial when multiple antenna parameters are simultaneously investigated. These techniques have proven advantageous especially when time-domain performance is critical and provide solutions for both single-ended and differential feed arrangements. The main applications using UWB channels in the 3.1 GHz −10.6 GHz spectrum are localization and tracking applications, mainly employing impulse radio UWB imaging, and generally using linear polarization. However circularly-polarized UWB antennas have been developed, both directional and omnidirectional and are being investigated across various systems

    Transceiver design and system optimization for ultra-wideband communications

    Get PDF
    This dissertation investigates the potential promises and proposes possible solutions to the challenges of designing transceivers and optimizing system parameters in ultra-wideband (UWB) systems. The goal is to provide guidelines for UWB transceiver implementations under constraints by regulation, existing interference, and channel estimation. New UWB pulse shapes are invented that satisfy the Federal Communications Commission spectral mask. Parameters are designed to possibly implement the proposed pulses. A link budget is quantified based on an accurate frequency-dependent path loss calculation to account for variations across the ultra-wide bandwidth of the signal. Achievable information rates are quantified as a function of transmission distance over additive white Gaussian noise and multipath channels under specific UWB constraints: limited power spectral density, specific modulation formats, and a highly dispersive channel. The effect of self-interference (SI) and inter-symbol interference (ISI) on channel capacity is determined, and modulation formats that mitigate against this effect is identified. Spreading gains of familiar UWB signaling formats are evaluated, and UWB signals are proved to be spread spectrum. Conditions are formulated for trading coding gain with spreading gain with only a small impact on performance. Numerical results are examined to demonstrate that over a frequency-selective channel, the spreading gain may be beneficial in reducing the SI and ISI resulting in higher information rates. A reduced-rank adaptive filtering technique is applied to the problem of interference suppression and optimum combining in UWB communications. The reduced-rank combining method, in particular the eigencanceler, is proposed and compared with a minimum mean square error Rake receiver. Simulation results are evaluated to show that the performance of the proposed method is superior to the minimum mean square error when the correlation matrix is estimated from limited data. Impact of channel estimation on UWB system performance is investigated when path delays and path amplitudes are jointly estimated. Cramér-Rao bound (CRB) expressions for the variance of path delay and amplitude estimates are formulated using maximum likelihood estimation. Using the errors obtained from the CRB, the effective signal-to-noise ratio for UWB Rake receivers employing maximum ratio combining (MRC) is devised in the presence of channel path delay and amplitude errors. An exact expression of the bit error rate (BER) for UWB Rake receivers with MRC is derived with imperfect estimates of channel path delays and amplitudes. Further, this analysis is applied to design optimal transceiver parameters. The BER is used as part of a binary symmetric channel and the achievable information rates are evaluated. The optimum power allocation and number of symbols allocated to the pilot are developed with respect to maximizing the information rate. The optimal signal bandwidth to be used for UWB communications is determined in the presence of imperfect channel state information. The number of multipath components to be collected by Rake receivers is designed to optimize performance with non-ideal channel estimation
    corecore