151 research outputs found

    Compressed Sensing Based Multi-User Millimeter Wave Systems: How Many Measurements Are Needed?

    Full text link
    Millimeter wave (mmWave) systems will likely employ directional beamforming with large antenna arrays at both the transmitters and receivers. Acquiring channel knowledge to design these beamformers, however, is challenging due to the large antenna arrays and small signal-to-noise ratio before beamforming. In this paper, we propose and evaluate a downlink system operation for multi-user mmWave systems based on compressed sensing channel estimation and conjugate analog beamforming. Adopting the achievable sum-rate as a performance metric, we show how many compressed sensing measurements are needed to approach the perfect channel knowledge performance. The results illustrate that the proposed algorithm requires an order of magnitude less training overhead compared with traditional lower-frequency solutions, while employing mmWave-suitable hardware. They also show that the number of measurements need to be optimized to handle the trade-off between the channel estimate quality and the training overhead.Comment: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 201

    Iterative Soft/Hard Thresholding with Homotopy Continuation for Sparse Recovery

    Get PDF
    In this note, we analyze an iterative soft / hard thresholding algorithm with homotopy continuation for recovering a sparse signal xx^\dag from noisy data of a noise level ϵ\epsilon. Under suitable regularity and sparsity conditions, we design a path along which the algorithm can find a solution xx^* which admits a sharp reconstruction error xx=O(ϵ)\|x^* - x^\dag\|_{\ell^\infty} = O(\epsilon) with an iteration complexity O(lnϵlnγnp)O(\frac{\ln \epsilon}{\ln \gamma} np), where nn and pp are problem dimensionality and γ(0,1)\gamma\in (0,1) controls the length of the path. Numerical examples are given to illustrate its performance.Comment: 5 pages, 4 figure

    Compressive Sensing for No-Contact 3D Ground Penetrating Radar

    Get PDF

    User Activity Detection in Massive Random Access: Compressed Sensing vs. Coded Slotted ALOHA

    Full text link
    Machine-type communication services in mobile cel- lular systems are currently evolving with an aim to efficiently address a massive-scale user access to the system. One of the key problems in this respect is to efficiently identify active users in order to allocate them resources for the subsequent transmissions. In this paper, we examine two recently suggested approaches for user activity detection: compressed-sensing (CS) and coded slotted ALOHA (CSA), and provide their comparison in terms of performance vs resource utilization. Our preliminary results show that CS-based approach is able to provide the target user activity detection performance with less overall system resource utilization. However, this comes at a price of lower energy- efficiency per user, as compared to CSA-based approach.Comment: Accepted for presentation at IEEE SPAWC 201

    Coherence-Based Performance Guarantees of Orthogonal Matching Pursuit

    Full text link
    In this paper, we present coherence-based performance guarantees of Orthogonal Matching Pursuit (OMP) for both support recovery and signal reconstruction of sparse signals when the measurements are corrupted by noise. In particular, two variants of OMP either with known sparsity level or with a stopping rule are analyzed. It is shown that if the measurement matrix XCn×pX\in\mathbb{C}^{n\times p} satisfies the strong coherence property, then with nO(klogp)n\gtrsim\mathcal{O}(k\log p), OMP will recover a kk-sparse signal with high probability. In particular, the performance guarantees obtained here separate the properties required of the measurement matrix from the properties required of the signal, which depends critically on the minimum signal to noise ratio rather than the power profiles of the signal. We also provide performance guarantees for partial support recovery. Comparisons are given with other performance guarantees for OMP using worst-case analysis and the sorted one step thresholding algorithm.Comment: appeared at 2012 Allerton conferenc
    corecore