5,576 research outputs found

    Coherence-Based Performance Guarantees of Orthogonal Matching Pursuit

    Full text link
    In this paper, we present coherence-based performance guarantees of Orthogonal Matching Pursuit (OMP) for both support recovery and signal reconstruction of sparse signals when the measurements are corrupted by noise. In particular, two variants of OMP either with known sparsity level or with a stopping rule are analyzed. It is shown that if the measurement matrix X∈CnΓ—pX\in\mathbb{C}^{n\times p} satisfies the strong coherence property, then with n≳O(klog⁑p)n\gtrsim\mathcal{O}(k\log p), OMP will recover a kk-sparse signal with high probability. In particular, the performance guarantees obtained here separate the properties required of the measurement matrix from the properties required of the signal, which depends critically on the minimum signal to noise ratio rather than the power profiles of the signal. We also provide performance guarantees for partial support recovery. Comparisons are given with other performance guarantees for OMP using worst-case analysis and the sorted one step thresholding algorithm.Comment: appeared at 2012 Allerton conferenc

    Orthogonal Matching Pursuit: A Brownian Motion Analysis

    Full text link
    A well-known analysis of Tropp and Gilbert shows that orthogonal matching pursuit (OMP) can recover a k-sparse n-dimensional real vector from 4 k log(n) noise-free linear measurements obtained through a random Gaussian measurement matrix with a probability that approaches one as n approaches infinity. This work strengthens this result by showing that a lower number of measurements, 2 k log(n - k), is in fact sufficient for asymptotic recovery. More generally, when the sparsity level satisfies kmin <= k <= kmax but is unknown, 2 kmax log(n - kmin) measurements is sufficient. Furthermore, this number of measurements is also sufficient for detection of the sparsity pattern (support) of the vector with measurement errors provided the signal-to-noise ratio (SNR) scales to infinity. The scaling 2 k log(n - k) exactly matches the number of measurements required by the more complex lasso method for signal recovery with a similar SNR scaling.Comment: 11 pages, 2 figure
    • …
    corecore