12,261 research outputs found

    Drawing Graphs within Restricted Area

    Full text link
    We study the problem of selecting a maximum-weight subgraph of a given graph such that the subgraph can be drawn within a prescribed drawing area subject to given non-uniform vertex sizes. We develop and analyze heuristics both for the general (undirected) case and for the use case of (directed) calculation graphs which are used to analyze the typical mistakes that high school students make when transforming mathematical expressions in the process of calculating, for example, sums of fractions

    Transforming planar graph drawings while maintaining height

    Full text link
    There are numerous styles of planar graph drawings, notably straight-line drawings, poly-line drawings, orthogonal graph drawings and visibility representations. In this note, we show that many of these drawings can be transformed from one style to another without changing the height of the drawing. We then give some applications of these transformations

    The unknown Oldowan. ~1.7-million-year-old standardized obsidian small tools from Garba IV, Melka Kunture, Ethiopia

    Get PDF
    The Oldowan Industrial Complex has long been thought to have been static, with limited internal variability, embracing techno-complexes essentially focused on small-to-medium flake production. The flakes were rarely modified by retouch to produce small tools, which do not show any standardized pattern. Usually, the manufacture of small standardized tools has been interpreted as a more complex behavior emerging with the Acheulean technology. Here we report on the ~1.7 Ma Oldowan assemblages from Garba IVE-F at Melka Kunture in the Ethiopian highland. This industry is structured by technical criteria shared by the other East African Oldowan assemblages. However, there is also evidence of a specific technical process never recorded before, i.e. the systematic production of standardized small pointed tools strictly linked to the obsidian exploitation. Standardization and raw material selection in the manufacture of small tools disappear at Melka Kunture during the Lower Pleistocene Acheulean. This proves that 1) the emergence of a certain degree of standardization in toolkits does not reflect in itself a major step in cultural evolution; and that 2) the Oldowan knappers, when driven by functional needs and supported by a highly suitable raw material, were occasionally able to develop specific technical solutions. The small tool production at ~1.7 Ma, at a time when the Acheulean was already emerging elsewhere in East Africa, adds to the growing amount of evidence of Oldowan techno-economic variability and flexibility, further challenging the view that early stone knapping was static over hundreds of thousands of years

    3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks

    Full text link
    We propose a method for reconstructing 3D shapes from 2D sketches in the form of line drawings. Our method takes as input a single sketch, or multiple sketches, and outputs a dense point cloud representing a 3D reconstruction of the input sketch(es). The point cloud is then converted into a polygon mesh. At the heart of our method lies a deep, encoder-decoder network. The encoder converts the sketch into a compact representation encoding shape information. The decoder converts this representation into depth and normal maps capturing the underlying surface from several output viewpoints. The multi-view maps are then consolidated into a 3D point cloud by solving an optimization problem that fuses depth and normals across all viewpoints. Based on our experiments, compared to other methods, such as volumetric networks, our architecture offers several advantages, including more faithful reconstruction, higher output surface resolution, better preservation of topology and shape structure.Comment: 3DV 2017 (oral

    On Upward Drawings of Trees on a Given Grid

    Full text link
    Computing a minimum-area planar straight-line drawing of a graph is known to be NP-hard for planar graphs, even when restricted to outerplanar graphs. However, the complexity question is open for trees. Only a few hardness results are known for straight-line drawings of trees under various restrictions such as edge length or slope constraints. On the other hand, there exist polynomial-time algorithms for computing minimum-width (resp., minimum-height) upward drawings of trees, where the height (resp., width) is unbounded. In this paper we take a major step in understanding the complexity of the area minimization problem for strictly-upward drawings of trees, which is one of the most common styles for drawing rooted trees. We prove that given a rooted tree TT and a W×HW\times H grid, it is NP-hard to decide whether TT admits a strictly-upward (unordered) drawing in the given grid.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Improved Bounds for Drawing Trees on Fixed Points with L-shaped Edges

    Full text link
    Let TT be an nn-node tree of maximum degree 4, and let PP be a set of nn points in the plane with no two points on the same horizontal or vertical line. It is an open question whether TT always has a planar drawing on PP such that each edge is drawn as an orthogonal path with one bend (an "L-shaped" edge). By giving new methods for drawing trees, we improve the bounds on the size of the point set PP for which such drawings are possible to: O(n1.55)O(n^{1.55}) for maximum degree 4 trees; O(n1.22)O(n^{1.22}) for maximum degree 3 (binary) trees; and O(n1.142)O(n^{1.142}) for perfect binary trees. Drawing ordered trees with L-shaped edges is harder---we give an example that cannot be done and a bound of O(nlogn)O(n \log n) points for L-shaped drawings of ordered caterpillars, which contrasts with the known linear bound for unordered caterpillars.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    corecore