5 research outputs found

    Reuleaux: Robot Base Placement by Reachability Analysis

    Full text link
    Before beginning any robot task, users must position the robot's base, a task that now depends entirely on user intuition. While slight perturbation is tolerable for robots with moveable bases, correcting the problem is imperative for fixed-base robots if some essential task sections are out of reach. For mobile manipulation robots, it is necessary to decide on a specific base position before beginning manipulation tasks. This paper presents Reuleaux, an open source library for robot reachability analyses and base placement. It reduces the amount of extra repositioning and removes the manual work of identifying potential base locations. Based on the reachability map, base placement locations of a whole robot or only the arm can be efficiently determined. This can be applied to both statically mounted robots, where position of the robot and work piece ensure the maximum amount of work performed, and to mobile robots, where the maximum amount of workable area can be reached. Solutions are not limited only to vertically constrained placement, since complicated robotics tasks require the base to be placed at unique poses based on task demand. All Reuleaux library methods were tested on different robots of different specifications and evaluated for tasks in simulation and real world environment. Evaluation results indicate that Reuleaux had significantly improved performance than prior existing methods in terms of time-efficiency and range of applicability.Comment: Submitted to International Conference of Robotic Computing 201

    Task Focused Robotic Imitation Learning

    Get PDF
    For many years, successful applications of robotics were the domain of controlled environments, such as industrial assembly lines. Such environments are custom designed for the convenience of the robot and separated from human operators. In recent years, advances in artificial intelligence, in particular, deep learning and computer vision, allowed researchers to successfully demonstrate robots that operate in unstructured environments and directly interact with humans. One of the major applications of such robots is in assistive robotics. For instance, a wheelchair mounted robotic arm can help disabled users in the performance of activities of daily living (ADLs) such as feeding and personal grooming. Early systems relied entirely on the control of the human operator, something that is difficult to accomplish by a user with motor and/or cognitive disabilities. In this dissertation, we are describing research results that advance the field of assistive robotics. The overall goal is to improve the ability of the wheelchair / robotic arm assembly to help the user with the performance of the ADLs by requiring only high-level commands from the user. Let us consider an ADL involving the manipulation of an object in the user\u27s home. This task can be naturally decomposed into two components: the movement of the wheelchair in such a way that the manipulator can conveniently grasp the object and the movement of the manipulator itself. This dissertation we provide an approach for addressing the challenge of finding the position appropriate for the required manipulation. We introduce the ease-of-reach score (ERS), a metric that quantifies the preferences for the positioning of the base while taking into consideration the shape and position of obstacles and clutter in the environment. As the brute force computation of ERS is computationally expensive, we propose a machine learning approach to estimate the ERS based on features and characteristics of the obstacles. This dissertation addresses the second component as well, the ability of the robotic arm to manipulate objects. Recent work in end-to-end learning of robotic manipulation had demonstrated that a deep learning-based controller of vision-enabled robotic arms can be thought to manipulate objects from a moderate number of demonstrations. However, the current state of the art systems are limited in robustness to physical and visual disturbances and do not generalize well to new objects. We describe new techniques based on task-focused attention that show significant improvement in the robustness of manipulation and performance in clutter
    corecore