75,664 research outputs found

    Pose-Normalized Image Generation for Person Re-identification

    Full text link
    Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on the pose. The model is based on a generative adversarial network (GAN) designed specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and complementary to features learned with the original images. Importantly, under the transfer learning setting, we show that our model generalizes well to any new re-id dataset without the need for collecting any training data for model fine-tuning. The model thus has the potential to make re-id model truly scalable.Comment: 10 pages, 5 figure

    A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking

    Full text link
    Person re identification is a challenging retrieval task that requires matching a person's acquired image across non overlapping camera views. In this paper we propose an effective approach that incorporates both the fine and coarse pose information of the person to learn a discriminative embedding. In contrast to the recent direction of explicitly modeling body parts or correcting for misalignment based on these, we show that a rather straightforward inclusion of acquired camera view and/or the detected joint locations into a convolutional neural network helps to learn a very effective representation. To increase retrieval performance, re-ranking techniques based on computed distances have recently gained much attention. We propose a new unsupervised and automatic re-ranking framework that achieves state-of-the-art re-ranking performance. We show that in contrast to the current state-of-the-art re-ranking methods our approach does not require to compute new rank lists for each image pair (e.g., based on reciprocal neighbors) and performs well by using simple direct rank list based comparison or even by just using the already computed euclidean distances between the images. We show that both our learned representation and our re-ranking method achieve state-of-the-art performance on a number of challenging surveillance image and video datasets. The code is available online at: https://github.com/pse-ecn/pose-sensitive-embeddingComment: CVPR 2018: v2 (fixes, added new results on PRW dataset

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes
    • …
    corecore