2 research outputs found

    Agent-Driven Representations, Algorithms, and Metrics for Automated Organizational Design.

    Full text link
    As cooperative multiagent systems (MASs) increase in interconnectivity, complexity, size, and longevity, coordinating the agents' reasoning and behaviors becomes increasingly difficult. One approach to address these issues is to use insights from human organizations to design structures within which the agents can more efficiently reason and interact. Generally speaking, an organization influences each agent such that, by following its respective influences, an agent can make globally-useful local decisions without having to explicitly reason about the complete joint coordination problem. For example, an organizational influence might constrain and/or inform which actions an agent performs. If these influences are well-constructed to be cohesive and correlated across the agents, then each agent is influenced into reasoning about and performing only the actions that are appropriate for its (organizationally-designated) portion of the joint coordination problem. In this dissertation, I develop an agent-driven approach to organizations, wherein the foundation for representing and reasoning about an organization stems from the needs of the agents in the MAS. I create an organizational specification language to express the possible ways in which an organization could influence the agents' decision making processes, and leverage details from those decision processes to establish quantitative, principled metrics for organizational performance based on the expected impact that an organization will have on the agents' reasoning and behaviors. Building upon my agent-driven organizational representations, I identify a strategy for automating the organizational design process~(ODP), wherein my ODP computes a quantitative description of organizational patterns and then searches through those possible patterns to identify an (approximately) optimal set of organizational influences for the MAS. Evaluating my ODP reveals that it can create organizations that both influence the MAS into effective patterns of joint policies and also streamline the agents' decision making in a coordinate manner. Finally, I use my agent-driven approach to identify characteristics of effective abstractions over organizational influences and a heuristic strategy for converging on a good abstraction.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113616/1/jsleight_1.pd

    Generalized asset integrity games

    Get PDF
    Generalized assets represent a class of multi-scale adaptive state-transition systems with domain-oblivious performance criteria. The governance of such assets must proceed without exact specifications, objectives, or constraints. Decision making must rapidly scale in the presence of uncertainty, complexity, and intelligent adversaries. This thesis formulates an architecture for generalized asset planning. Assets are modelled as dynamical graph structures which admit topological performance indicators, such as dependability, resilience, and efficiency. These metrics are used to construct robust model configurations. A normalized compression distance (NCD) is computed between a given active/live asset model and a reference configuration to produce an integrity score. The utility derived from the asset is monotonically proportional to this integrity score, which represents the proximity to ideal conditions. The present work considers the situation between an asset manager and an intelligent adversary, who act within a stochastic environment to control the integrity state of the asset. A generalized asset integrity game engine (GAIGE) is developed, which implements anytime algorithms to solve a stochastically perturbed two-player zero-sum game. The resulting planning strategies seek to stabilize deviations from minimax trajectories of the integrity score. Results demonstrate the performance and scalability of the GAIGE. This approach represents a first-step towards domain-oblivious architectures for complex asset governance and anytime planning
    corecore