39,834 research outputs found

    Phenotypic flexibility and the evolution of organismal design

    Get PDF
    Evolutionary biologists often use phenotypic differences between species and between individuals to gain an understanding of organismal design. The focus of much recent attention has been on developmental plasticity – the environmentally induced variability during development within a single genotype. The phenotypic variation expressed by single reproductively mature organisms throughout their life, traditionally the subject of many physiological studies, has remained underexploited in evolutionary biology. Phenotypic flexibility, the reversible within-individual variation, is a function of environmental conditions varying predictably (e.g. with season), or of more stochastic fluctuations in the environment. Here, we provide a common framework to bring the different categories of phenotypic plasticity together, and emphasize perspectives on adaptation that reversible types of plasticity might provide. We argue that better recognition and use of the various levels of phenotypic variation will increase the scope for phenotypic experimentation, comparison and integration.

    Competition-driven evolution of organismal complexity

    Full text link
    Non-uniform rates of morphological evolution and evolutionary increases in organismal complexity, captured in metaphors like "adaptive zones", "punctuated equilibrium" and "blunderbuss patterns", require more elaborate explanations than a simple gradual accumulation of mutations. Here we argue that non-uniform evolutionary increases in phenotypic complexity can be caused by a threshold-like response to growing ecological pressures resulting from evolutionary diversification at a given level of complexity. Acquisition of a new phenotypic feature allows an evolving species to escape this pressure but can typically be expected to carry significant physiological costs. Therefore, the ecological pressure should exceed a certain level to make such an acquisition evolutionarily successful. We present a detailed quantitative description of this process using a microevolutionary competition model as an example. The model exhibits sequential increases in phenotypic complexity driven by diversification at existing levels of complexity and the resulting increase in competitive pressure, which can push an evolving species over the barrier of physiological costs of new phenotypic features.Comment: Open PDF with Acrobat to see movies, 22 pages, 9 figure

    The modern versus extended evolutionary synthesis : sketch of an intra-genomic gene's eye view for the evolutionary-genetic underpinning of epigenetic and developmental evolution

    Get PDF
    Studying the phenotypic evolution of organisms in terms of populations of genes and genotypes, the Modern Synthesis (MS) conceptualizes biological evolution in terms of 'inter-organismal' interactions among genes sitting in the different individual organisms that constitute a population. It 'black-boxes' the complex 'intra-organismic' molecular and developmental epigenetics mediating between genotypes and phenotypes. To conceptually integrate epigenetics and evo-devo into evolutionary theory, advocates of an Extended Evolutionary Synthesis (EES) argue that the MS's reductive gene-centrism should be abandoned in favor of a more inclusive organism-centered approach. To push the debate to a new level of understanding, we introduce the evolutionary biology of 'intra-genomic conflict' (IGC) to the controversy. This strategy is based on a twofold rationale. First, the field of IGC is both ‘gene-centered’ and 'intra-organismic' and, as such, could build a bridge between the gene-centered MS and the intra-organismic fields of epigenetics and evo-devo. And second, it is increasingly revealed that IGC plays a significant causal role in epigenetic and developmental evolution and even in speciation. Hence, to deal with the ‘discrepancy’ between the ‘gene-centered’ MS and the ‘intra-organismic’ fields of epigenetics and evo-devo, we sketch a conceptual solution in terms of ‘intra-genomic conflict and compromise’ – an ‘intra-genomic gene’s eye view’ that thinks in terms of intra-genomic ‘evolutionarily stable strategies’ (ESSs) among numerous and various DNA regions and elements – to evolutionary-genetically underwrite both epigenetic and developmental evolution, as such questioning the ‘gene-de-centered’ stance put forward by EES-advocates

    Quantum Genetics and Quantum Automata Models of Quantum-Molecular Evolution Involved in the Evolution of Organisms and Species

    Get PDF
    Previous theoretical or general approaches to the problems of Quantum Genetics and Molecular Evolution are considered in this article from the point of view of Quantum Automata Theory first published by the author in 1971 and further developed in several recent articles. The representation of genomes and Interactome networks in categories of many-valued logic LMn –algebras that are naturally transformed during biological evolution, or evolve through interactions with the environment provide a new insight into the mechanisms of molecular evolution, as well as organismal evolution, in terms of sequences of quantum automata. Phenotypic changes are expressed only when certain environmentally-induced quantum-molecular changes are coupled with an internal re-structuring of major submodules of the genome and Interactome networks related to cell cycling and cell growth. Contrary to the commonly held view of `standard’ Darwinist models of evolution, the evolution of organisms and species occurs through coupled multi-molecular transformations induced not only by the environment but actually realized through internal re-organizations of genome and interactome networks. The biological, evolutionary processes involve certain epigenetic transformations that are responsible for phenotypic expression of the genome and Interactome transformations initiated at the quantum-molecular level. It can thus be said that only quantum genetics can provide correct explanations of evolutionary processes that are initiated at the quantum--multi-molecular levels and propagate to the higher levels of organismal and species evolution.

Biological evolution should be therefore regarded as a multi-scale process which is initiated by underlying quantum (coupled) multi-molecular transformations of the genomic and interactomic networks, followed by specific phenotypic transformations at the level of organism and the variable biogroupoids associated with the evolution of species which are essential to the survival of the species. The theoretical framework introduced in this article also paves the way to a Quantitative Biology approach to biological evolution at the quantum-molecular, as well as at the organismal and species levels. This is quite a substantial modification of the 'established’ modern Darwinist, and also of several so-called `molecular evolution’ theories

    Do cladistic and morphometric data capture common patterns of morphological disparity?

    Get PDF
    The distinctly non-random diversity of organismal form manifests itself in discrete clusters of taxa that share a common body plan. As a result, analyses of disparity require a scalable comparative framework. The difficulties of applying geometric morphometrics to disparity analyses of groups with vastly divergent body plans are overcome partly by the use of cladistic characters. Character-based disparity analyses have become increasingly popular, but it is not clear how they are affected by character coding strategies or revisions of primary homology statements. Indeed, whether cladistic and morphometric data capture similar patterns of morphological variation remains a moot point. To address this issue, we employ both cladistic and geometric morphometric data in an exploratory study of disparity focussing on caecilian amphibians. Our results show no impact on relative intertaxon distances when different coding strategies for cladistic characters were used or when revised concepts of homology were considered. In all instances, we found no statistically significant difference between pairwise Euclidean and Procrustes distances, although the strength of the correlation among distance matrices varied. This suggests that cladistic and geometric morphometric data appear to summarize morphological variation in comparable ways. Our results support the use of cladistic data for characterizing organismal disparity

    Reproduction and Dispersal of Biological Soil Crust Organisms

    Get PDF
    Biological soil crusts (BSCs) consist of a diverse and highly integrated community of organisms that effectively colonize and collectively stabilize soil surfaces. BSCs vary in terms of soil chemistry and texture as well as the environmental parameters that combine to support unique combinations of organisms—including cyanobacteria dominated, lichen-dominated, and bryophyte-dominated crusts. The list of organismal groups that make up BSC communities in various and unique combinations include—free living, lichenized, and mycorrhizal fungi, chemoheterotrophic bacteria, cyanobacteria, diazotrophic bacteria and archaea, eukaryotic algae, and bryophytes. The various BSC organismal groups demonstrate several common characteristics including—desiccation and extreme temperature tolerance, production of various soil binding chemistries, a near exclusive dependency on asexual reproduction, a pattern of aerial dispersal over impressive distances, and a universal vulnerability to a wide range of human-related perturbations. With this publication, we provide literature-based insights as to how each organismal group contributes to the formation and maintenance of the structural and functional attributes of BSCs, how they reproduce, and how they are dispersed. We also emphasize the importance of effective application of molecular and microenvironment sampling and assessment tools in order to provide cogent and essential answers that will allow scientists and land managers to better understand and manage the biodiversity and functional relationships of soil crust communities
    corecore