2,572,884 research outputs found
Edge-Orders
Canonical orderings and their relatives such as st-numberings have been used
as a key tool in algorithmic graph theory for the last decades. Recently, a
unifying concept behind all these orders has been shown: they can be described
by a graph decomposition into parts that have a prescribed vertex-connectivity.
Despite extensive interest in canonical orderings, no analogue of this
unifying concept is known for edge-connectivity. In this paper, we establish
such a concept named edge-orders and show how to compute (1,1)-edge-orders of
2-edge-connected graphs as well as (2,1)-edge-orders of 3-edge-connected graphs
in linear time, respectively. While the former can be seen as the edge-variants
of st-numberings, the latter are the edge-variants of Mondshein sequences and
non-separating ear decompositions. The methods that we use for obtaining such
edge-orders differ considerably in almost all details from the ones used for
their vertex-counterparts, as different graph-theoretic constructions are used
in the inductive proof and standard reductions from edge- to
vertex-connectivity are bound to fail.
As a first application, we consider the famous Edge-Independent Spanning Tree
Conjecture, which asserts that every k-edge-connected graph contains k rooted
spanning trees that are pairwise edge-independent. We illustrate the impact of
the above edge-orders by deducing algorithms that construct 2- and 3-edge
independent spanning trees of 2- and 3-edge-connected graphs, the latter of
which improves the best known running time from O(n^2) to linear time
Polynomial Path Orders
This paper is concerned with the complexity analysis of constructor term
rewrite systems and its ramification in implicit computational complexity. We
introduce a path order with multiset status, the polynomial path order POP*,
that is applicable in two related, but distinct contexts. On the one hand POP*
induces polynomial innermost runtime complexity and hence may serve as a
syntactic, and fully automatable, method to analyse the innermost runtime
complexity of term rewrite systems. On the other hand POP* provides an
order-theoretic characterisation of the polytime computable functions: the
polytime computable functions are exactly the functions computable by an
orthogonal constructor TRS compatible with POP*.Comment: LMCS version. This article supersedes arXiv:1209.379
On Ordinal Invariants in Well Quasi Orders and Finite Antichain Orders
We investigate the ordinal invariants height, length, and width of well quasi
orders (WQO), with particular emphasis on width, an invariant of interest for
the larger class of orders with finite antichain condition (FAC). We show that
the width in the class of FAC orders is completely determined by the width in
the class of WQOs, in the sense that if we know how to calculate the width of
any WQO then we have a procedure to calculate the width of any given FAC order.
We show how the width of WQO orders obtained via some classical constructions
can sometimes be computed in a compositional way. In particular, this allows
proving that every ordinal can be obtained as the width of some WQO poset. One
of the difficult questions is to give a complete formula for the width of
Cartesian products of WQOs. Even the width of the product of two ordinals is
only known through a complex recursive formula. Although we have not given a
complete answer to this question we have advanced the state of knowledge by
considering some more complex special cases and in particular by calculating
the width of certain products containing three factors. In the course of
writing the paper we have discovered that some of the relevant literature was
written on cross-purposes and some of the notions re-discovered several times.
Therefore we also use the occasion to give a unified presentation of the known
results
- …
