13 research outputs found

    Physical-Layer Cooperation in Coded OFDM Relaying Systems

    Get PDF
    Mobile communication systems nowadays require ever-increasing data rate and coverage of wide areas. One promising approach to achieve this goal is the application of cooperative communications enabled by introducing intermediate nodes known as relays to support the transmission between terminals. By processing and forwarding the receive message at the relays, the path-loss effect between the source and the destination is mitigated. One major limit factor for relay assisted communications is that a relay cannot transmit and receive using the same physical resources. Therefore, a half-duplex constraint is commonly assumed resulting in halved spectral efficiency. To combat this drawback, two-way relaying is introduced, where two sources exchange information with each. On the other hand, due to the physical limitation of the relays, e.g., wireless sensor nodes, it's not possible to implement multiple antennas at one relay, which prohibits the application of multiple-input multiple-output (MIMO) techniques. However, when treating multiple relays as a cluster, a virtual antenna array is formed to perform MIMO techniques in a distributed manner. %This thesis aims at designing efficient one-way and two-way relaying schemes. Specifically, existing schemes from the literature are improved and new schemes are developed with the emphasis on coded orthogonal frequency division multiplexing (OFDM) transmissions. Of special interest is the application of physical-layer network coding (PLNC) for two-phase two-way relaying. In this case, a network coded message is estimated from the superimposed receive signal at the relay using PLNC schemes. The schemes are investigated based on a mutual information analysis and their performance are improved by a newly proposed phase control strategy. Furthermore, performance degradation due to system asynchrony is mitigated depending on different PLNC schemes. When multiple relays are available, novel cooperation schemes allowing information exchange within the relay cluster are proposed that facilitate distributed MIMO reception and transmission. Additionally, smart signaling approaches are presented to enable the cooperation at different levels with the cooperation overhead taken into account adequately in system performance evaluation

    Interference mitigation using group decoding in multiantenna systems

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    On Development of Some Soft Computing Based Multiuser Detection Techniques for SDMA–OFDM Wireless Communication System

    Get PDF
    Space Division Multiple Access(SDMA) based technique as a subclass of Multiple Input Multiple Output (MIMO) systems achieves high spectral efficiency through bandwidth reuse by multiple users. On the other hand, Orthogonal Frequency Division Multiplexing (OFDM) mitigates the impairments of the propagation channel. The combination of SDMA and OFDM has emerged as a most competitive technology for future wireless communication system. In the SDMA uplink, multiple users communicate simultaneously with a multiple antenna Base Station (BS) sharing the same frequency band by exploring their unique user specific-special spatial signature. Different Multiuser Detection (MUD) schemes have been proposed at the BS receiver to identify users correctly by mitigating the multiuser interference. However, most of the classical MUDs fail to separate the users signals in the over load scenario, where the number of users exceed the number of receiving antennas. On the other hand, due to exhaustive search mechanism, the optimal Maximum Likelihood (ML) detector is limited by high computational complexity, which increases exponentially with increasing number of simultaneous users. Hence, cost function minimization based Minimum Error Rate (MER) detectors are preferred, which basically minimize the probability of error by iteratively updating receiver’s weights using adaptive algorithms such as Steepest Descent (SD), Conjugate Gradient (CG) etc. The first part of research proposes Optimization Techniques (OTs) aided MER detectors to overcome the shortfalls of the CG based MER detectors. Popular metaheuristic search algorithms like Adaptive Genetic Algorithm (AGA), Adaptive Differential Evolution Algorithm (ADEA) and Invasive Weed Optimization (IWO), which rely on an intelligent search of a large but finite solution space using statistical methods, have been applied for finding the optimal weight vectors for MER MUD. Further, it is observed in an overload SDMA–OFDM system that the channel output phasor constellation often becomes linearly non-separable. With increasing the number of users, the receiver weight optimization task turns out to be more difficult due to the exponentially increased number of dimensions of the weight matrix. As a result, MUD becomes a challenging multidimensional optimization problem. Therefore, signal classification requires a nonlinear solution. Considering this, the second part of research work suggests Artificial Neural Network (ANN) based MUDs on thestandard Multilayer Perceptron (MLP) and Radial Basis Function (RBF) frameworks fo

    Physical Layer Parameter and Algorithm Study in a Downlink OFDM-LTE Context

    Get PDF

    Enhanced carrierless amplitude and phase modulation for optical communication systems

    Get PDF
    This thesis develops and investigates enhanced techniques for carrierless amplitude and phase modulation (CAP) in optical communication systems. The CAP scheme is studied as the physical layer modulation technique due to its implementation simplicity and versatility, that enables its implementation as a single carrier (CAP) or multi-carrier technique (m-CAP). The effect of timing jitter on the error performance of CAP is first investigated. The investigation indicates that synchronization is a critical requirement for CAP receiver and as a result, a novel low-complexity synchronization algorithm is developed with experimental demonstration for CAP-based visible light communication (VLC) systems. To further reduce the overall link complexity, a fractionally-spaced equalizer (FSE) is considered to mitigate the effects of inter-symbol interference (ISI) and timing jitter. The FSE implementation, which eliminates the need for a separate synchronization block, is shown through simulation and VLC experimental demonstration to outperform symbol-spaced equalizers (SSE) that are reported in literature for CAP-based VLC systems. Furthermore, in this thesis, spectrally-efficient index modulation techniques are developed for CAP. The proposed techniques can be divided into two broad groups, namely spatial index CAP (S-CAP) and subband index CAP (SI-CAP). The proposed spatial index techniques leverage the fact that in VLC, multiple optical sources are often required. The spatial CAP (S-CAP) transmits CAP signal through one of Nt available LEDs. It is developed to reduce equalization requirement and improve the spectral efficiency of the conventional CAP. In addition to the bits transmitted through the CAP symbol, the S-CAP encodes additional bits on the indexing/spatial location of the LEDs. The generalised S-CAP (GS-CAP) is further developed to relax the S-CAP limitation of using a single LED per symbol duration. In addition to the S-CAP scheme, multiple-input multiple-output (MIMO) techniques of repetitive-coded CAP (RC-CAP) and spatial multiplexing CAP (SMux-CAP) are investigated for CAP. Low-complexity detectors are also developed for the MIMO schemes. A key challenge of the MIMO schemes is that they suffer power penalty when channel gains are similar, which occur when the optical sources are closely located. The use of multiple receivers and power factor imbalance (PFI) techniques are proposed to mitigate this power penalty. The techniques result in significant improvement in the power efficiency of the MIMO schemes and ensure that the spectral efficiency gain is obtained with little power penalty. Finally, subband index CAP (SI-CAP) is developed to improve the spectral efficiency of m-CAP and reduce its peak-to-average power ratio (PAPR). The SI-CAP encodes additional information bits on the selection of ‘active’ subbands of m-CAP and only modulate data symbols on these ‘active’ subbands. The error performance of the proposed SI-CAP is evaluated analytically and verified with computer-based simulations. The SI-CAP technique is also experimented for both VLC and step-index plastic optical fibre (SI-POF) communication links. The experimental results show that for a fixed power efficiency, SI-CAP achieves higher data rate compared tom-CAP. For example, at a representative bit error rate (BER) of 10-5, the SI-CAP achieves a data rate and power efficiency gain of 26:5 Mb/s and 2:5 dB, respectively when compared to m-CAP. In addition, an enhanced SI-CAP (eSI-CAP) is developed to address the complexity that arises in SI-CAP at higher modulation order. The results of the experimental demonstrations in VLC and 10 m SI-POF link shows that when compared with m-CAP, eSI-CAP consistently yields a data rate improvement of between 7% and 13% for varying values of the SNR

    Channelization, Link Adaptation and Multi-antenna Techniques for OFDM(A) Based Wireless Systems

    Get PDF
    corecore