5 research outputs found

    Ordered ports - a language concept for high-level distributed programming

    No full text
    A new language concept for high-level distributed programming is proposed. Programs are organised as a collection of concurrently executing processes. Some of these processes, referred to as liaison processes, have a monitor-like structure and contain ports which may be invoked by other processes for the purposes of synchronisation and communication. Synchronisation is achieved by conditional activation of ports and also through port control constructs which may directly specify the execution ordering of ports. These constructs implement a path-expression-like mechanism for synchronisation and are also equipped with options to provide conditional, non-deterministic and priority ordering of ports. The usefulness and expressive power of the proposed concepts are illustrated through solutions of several representative programming problems. Some implementation issues are also considered

    Ordered Ports - a Language Concept for High-level Distributed Programming

    No full text

    Interrupt-generating active data objects

    Get PDF
    An investigation is presented into an interrupt-generating object model which is designed to reduce the effort of programming distributed memory multicomputer networks. The object model is aimed at the natural modelling of problem domains in which a number of concurrent entities interrupt one another as they lay claim to shared resources. The proposed computational model provides for the safe encapsulation of shared data, and incorporates inherent arbitration for simultaneous access to the data. It supplies a predicate triggering mechanism for use in conditional synchronization and as an alternative mechanism to polling. Linguistic support for the proposal requires a novel form of control structure which is able to interface sensibly with interrupt-generating active data objects. The thesis presents the proposal as an elemental language structure, with axiomatic guarantees which enforce safety properties and aid in program proving. The established theory of CSP is used to reason about the object model and its interface. An overview is presented of a programming language called HUL, whose semantics reflect the proposed computational model. Using the syntax of HUL, the application of the interrupt-generating active data object is illustrated. A range of standard concurrent problems is presented to demonstrate the properties of the interrupt-generating computational model. Furthermore, the thesis discusses implementation considerations which enable the model to be mapped precisely onto multicomputer networks, and which sustain the abstract programming level provided by the interrupt-generating active data object in the wider programming structures of HUL

    Interrupt-generating active data objects

    Get PDF
    An investigation is presented into an interrupt-generating object model which is designed to reduce the effort of programming distributed memory multicomputer networks. The object model is aimed at the natural modelling of problem domains in which a number of concurrent entities interrupt one another as they lay claim to shared resources. The proposed computational model provides for the safe encapsulation of shared data, and incorporates inherent arbitration for simultaneous access to the data. It supplies a predicate triggering mechanism for use in conditional synchronization and as an alternative mechanism to polling. Linguistic support for the proposal requires a novel form of control structure which is able to interface sensibly with interrupt-generating active data objects. The thesis presents the proposal as an elemental language structure, with axiomatic guarantees which enforce safety properties and aid in program proving. The established theory of CSP is used to reason about the object model and its interface. An overview is presented of a programming language called HUL, whose semantics reflect the proposed computational model. Using the syntax of HUL, the application of the interrupt-generating active data object is illustrated. A range of standard concurrent problems is presented to demonstrate the properties of the interrupt-generating computational model. Furthermore, the thesis discusses implementation considerations which enable the model to be mapped precisely onto multicomputer networks, and which sustain the abstract programming level provided by the interrupt-generating active data object in the wider programming structures of HUL
    corecore