87,299 research outputs found

    Learning Weak Constraints in Answer Set Programming

    Get PDF
    This paper contributes to the area of inductive logic programming by presenting a new learning framework that allows the learning of weak constraints in Answer Set Programming (ASP). The framework, called Learning from Ordered Answer Sets, generalises our previous work on learning ASP programs without weak constraints, by considering a new notion of examples as ordered pairs of partial answer sets that exemplify which answer sets of a learned hypothesis (together with a given background knowledge) are preferred to others. In this new learning task inductive solutions are searched within a hypothesis space of normal rules, choice rules, and hard and weak constraints. We propose a new algorithm, ILASP2, which is sound and complete with respect to our new learning framework. We investigate its applicability to learning preferences in an interview scheduling problem and also demonstrate that when restricted to the task of learning ASP programs without weak constraints, ILASP2 can be much more efficient than our previously proposed system.Comment: To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 201

    Logic Programs with Compiled Preferences

    Full text link
    We describe an approach for compiling preferences into logic programs under the answer set semantics. An ordered logic program is an extended logic program in which rules are named by unique terms, and in which preferences among rules are given by a set of dedicated atoms. An ordered logic program is transformed into a second, regular, extended logic program wherein the preferences are respected, in that the answer sets obtained in the transformed theory correspond with the preferred answer sets of the original theory. Our approach allows both the specification of static orderings (as found in most previous work), in which preferences are external to a logic program, as well as orderings on sets of rules. In large part then, we are interested in describing a general methodology for uniformly incorporating preference information in a logic program. Since the result of our translation is an extended logic program, we can make use of existing implementations, such as dlv and smodels. To this end, we have developed a compiler, available on the web, as a front-end for these programming systems

    The Divide-and-Conquer Subgoal-Ordering Algorithm for Speeding up Logic Inference

    Full text link
    It is common to view programs as a combination of logic and control: the logic part defines what the program must do, the control part -- how to do it. The Logic Programming paradigm was developed with the intention of separating the logic from the control. Recently, extensive research has been conducted on automatic generation of control for logic programs. Only a few of these works considered the issue of automatic generation of control for improving the efficiency of logic programs. In this paper we present a novel algorithm for automatic finding of lowest-cost subgoal orderings. The algorithm works using the divide-and-conquer strategy. The given set of subgoals is partitioned into smaller sets, based on co-occurrence of free variables. The subsets are ordered recursively and merged, yielding a provably optimal order. We experimentally demonstrate the utility of the algorithm by testing it in several domains, and discuss the possibilities of its cooperation with other existing methods

    Preference Modelling

    Get PDF
    This paper provides the reader with a presentation of preference modelling fundamental notions as well as some recent results in this field. Preference modelling is an inevitable step in a variety of fields: economy, sociology, psychology, mathematical programming, even medicine, archaeology, and obviously decision analysis. Our notation and some basic definitions, such as those of binary relation, properties and ordered sets, are presented at the beginning of the paper. We start by discussing different reasons for constructing a model or preference. We then go through a number of issues that influence the construction of preference models. Different formalisations besides classical logic such as fuzzy sets and non-classical logics become necessary. We then present different types of preference structures reflecting the behavior of a decision-maker: classical, extended and valued ones. It is relevant to have a numerical representation of preferences: functional representations, value functions. The concepts of thresholds and minimal representation are also introduced in this section. In section 7, we briefly explore the concept of deontic logic (logic of preference) and other formalisms associated with "compact representation of preferences" introduced for special purpoes. We end the paper with some concluding remarks

    Towards the implementation of a preference-and uncertain-aware solver using answer set programming

    Get PDF
    Logic programs with possibilistic ordered disjunction (or LPPODs) are a recently defined logic-programming framework based on logic programs with ordered disjunction and possibilistic logic. The framework inherits the properties of such formalisms and merging them, it supports a reasoning which is nonmonotonic, preference-and uncertain-aware. The LPPODs syntax allows to specify 1) preferences in a qualitative way, and 2) necessity values about the certainty of program clauses. As a result at semantic level, preferences and necessity values can be used to specify an order among program solutions. This class of program therefore fits well in the representation of decision problems where a best option has to be chosen taking into account both preferences and necessity measures about information. In this paper we study the computation and the complexity of the LPPODs semantics and we describe the algorithm for its implementation following on Answer Set Programming approach. We describe some decision scenarios where the solver can be used to choose the best solutions by checking whether an outcome is possibilistically preferred over another considering preferences and uncertainty at the same time.Postprint (published version
    • …
    corecore