4 research outputs found

    Digraph Complexity Measures and Applications in Formal Language Theory

    Full text link
    We investigate structural complexity measures on digraphs, in particular the cycle rank. This concept is intimately related to a classical topic in formal language theory, namely the star height of regular languages. We explore this connection, and obtain several new algorithmic insights regarding both cycle rank and star height. Among other results, we show that computing the cycle rank is NP-complete, even for sparse digraphs of maximum outdegree 2. Notwithstanding, we provide both a polynomial-time approximation algorithm and an exponential-time exact algorithm for this problem. The former algorithm yields an O((log n)^(3/2))- approximation in polynomial time, whereas the latter yields the optimum solution, and runs in time and space O*(1.9129^n) on digraphs of maximum outdegree at most two. Regarding the star height problem, we identify a subclass of the regular languages for which we can precisely determine the computational complexity of the star height problem. Namely, the star height problem for bideterministic languages is NP-complete, and this holds already for binary alphabets. Then we translate the algorithmic results concerning cycle rank to the bideterministic star height problem, thus giving a polynomial-time approximation as well as a reasonably fast exact exponential algorithm for bideterministic star height.Comment: 19 pages, 1 figur

    Digraph Complexity Measures and Applications in Formal Language Theory

    Get PDF
    We investigate structural complexity measures on digraphs, in particular the cycle rank. This concept is intimately related to a classical topic in formal language theory, namely the star height of regular languages. We explore this connection, and obtain several new algorithmic insights regarding both cycle rank and star height. Among other results, we show that computing the cycle rank is NP-complete, even for sparse digraphs of maximum outdegree 2. Notwithstanding, we provide both a polynomial-time approximation algorithm and an exponential-time exact algorithm for this problem. The former algorithm yields an O((log n)^(3/2))- approximation in polynomial time, whereas the latter yields the optimum solution, and runs in time and space O*(1.9129^n) on digraphs of maximum outdegree at most two. Regarding the star height problem, we identify a subclass of the regular languages for which we can precisely determine the computational complexity of the star height problem. Namely, the star height problem for bideterministic languages is NP-complete, and this holds already for binary alphabets. Then we translate the algorithmic results concerning cycle rank to the bideterministic star height problem, thus giving a polynomial-time approximation as well as a reasonably fast exact exponential algorithm for bideterministic star height.Comment: 19 pages, 1 figur

    Ordered coloring grids and related graphs

    No full text
    We investigate a coloring problem, called ordered coloring, in grids and some other families of grid-like graphs. Ordered coloring (also known as vertex ranking) is related to conflict-free coloring and other traditional coloring problems. Such coloring problems can model (among others) efficient frequency assignments in cellular networks. Our main technical results improve upper and lower bounds for the ordered chromatic number of grids and related graphs. To the best of our knowledge, this is the first attempt to calculate exactly the ordered chromatic number of these graph families
    corecore