8 research outputs found

    Contextuality in Three Types of Quantum-Mechanical Systems

    Get PDF
    We present a formal theory of contextuality for a set of random variables grouped into different subsets (contexts) corresponding to different, mutually incompatible conditions. Within each context the random variables are jointly distributed, but across different contexts they are stochastically unrelated. The theory of contextuality is based on the analysis of the extent to which some of these random variables can be viewed as preserving their identity across different contexts when one considers all possible joint distributions imposed on the entire set of the random variables. We illustrate the theory on three systems of traditional interest in quantum physics (and also in non-physical, e.g., behavioral studies). These are systems of the Klyachko-Can-Binicioglu-Shumovsky-type, Einstein-Podolsky-Rosen-Bell-type, and Suppes-Zanotti-Leggett-Garg-type. Listed in this order, each of them is formally a special case of the previous one. For each of them we derive necessary and sufficient conditions for contextuality while allowing for experimental errors and contextual biases or signaling. Based on the same principles that underly these derivations we also propose a measure for the degree of contextuality and compute it for the three systems in question.Comment: Foundations of Physics 7, 762-78

    Noncontextuality with Marginal Selectivity in Reconstructing Mental Architectures

    Full text link
    We present a general theory of series-parallel mental architectures with selectively influenced stochastically non-independent components. A mental architecture is a hypothetical network of processes aimed at performing a task, of which we only observe the overall time it takes under variable parameters of the task. It is usually assumed that the network contains several processes selectively influenced by different experimental factors, and then the question is asked as to how these processes are arranged within the network, e.g., whether they are concurrent or sequential. One way of doing this is to consider the distribution functions for the overall processing time and compute certain linear combinations thereof (interaction contrasts). The theory of selective influences in psychology can be viewed as a special application of the interdisciplinary theory of (non)contextuality having its origins and main applications in quantum theory. In particular, lack of contextuality is equivalent to the existence of a "hidden" random entity of which all the random variables in play are functions. Consequently, for any given value of this common random entity, the processing times and their compositions (minima, maxima, or sums) become deterministic quantities. These quantities, in turn, can be treated as random variables with (shifted) Heaviside distribution functions, for which one can easily compute various linear combinations across different treatments, including interaction contrasts. This mathematical fact leads to a simple method, more general than the previously used ones, to investigate and characterize the interaction contrast for different types of series-parallel architectures.Comment: published in Frontiers in Psychology: Cognition 1:12 doi: 10.3389/fpsyg.2015.00735 (special issue "Quantum Structures in Cognitive and Social Science"

    A Qualified Kolmogorovian Account of Probabilistic Contextuality

    Full text link
    We describe a mathematical language for determining all possible patterns of contextuality in the dependence of stochastic outputs of a system on its deterministic inputs. The central notion is that of all possible couplings for stochastically unrelated outputs indexed by mutually incompatible values of inputs. A system is characterized by a pattern of which outputs can be "directly influenced" by which inputs (a primitive relation, hypothetical or normative), and by certain constraints imposed on the outputs (such as Bell-type inequalities or their quantum analogues). The set of couplings compatible with these constraints represents a form of contextuality in the dependence of outputs on inputs with respect to the declared pattern of direct influences.Comment: Lecture Notes in Computer Science 8369, 201-212 (2014
    corecore