556,709 research outputs found

    Order batching in multi-server pick-and-sort warehouses.

    Get PDF
    In many warehouses, customer orders are batched to profit from a reduction in the order picking effort. This reduction has to be offset against an increase in sorting effort. This paper studies the impact of the order batching policy on average customer order throughput time, in warehouses where the picking and sorting functions are executed separately by either a single operator or multiple parallel operators. We present a throughput time estimation model based on Whitt's queuing network approach, assuming that the number of order lines per customer order follows a discrete probability distribution and that the warehouse uses a random storage strategy. We show that the model is adequate in approximating the optimal pick batch size, minimizing average customer order throughput time. Next, we use the model to explore the different factors influencing optimal batch size, the optimal allocation of workers to picking and sorting, and the impact of different order picking strategies such as sort-while-pick (SWP) versus pick-and-sort (PAS)Order batching; Order picking and sorting; Queueing; Warehousing;

    Exact algorithms for the order picking problem

    Full text link
    Order picking is the problem of collecting a set of products in a warehouse in a minimum amount of time. It is currently a major bottleneck in supply-chain because of its cost in time and labor force. This article presents two exact and effective algorithms for this problem. Firstly, a sparse formulation in mixed-integer programming is strengthened by preprocessing and valid inequalities. Secondly, a dynamic programming approach generalizing known algorithms for two or three cross-aisles is proposed and evaluated experimentally. Performances of these algorithms are reported and compared with the Traveling Salesman Problem (TSP) solver Concorde

    An improved largest gap routing heuristic for order picking

    Get PDF
    The largest-gap policy is a routing heuristic for order picking systems. In this paper we develop an improved largest gap routing method. A simulation approach is used to demonstrate the superior performance of the improved largest gap routing over traditional largest gap. Moreover, this paper tests the performance impact of storage assignment rules on largest gap routings. Several scenarios with various order sizes and different item popularity proportions are tested. Monte-Carlo simulation is used to carry out the experiments. The numerical results from the computational analysis show that our improved largest gap routing always outperforms the traditional largest gap routing, i.e. for all order sizes. The effect is the most distinct when the order size is smaller. Finally the study demonstrates that the optimal storage assignment rule to be combined with largest gap routing is within-aisle storage

    Metaheuristics for the Order Batching Problem in Manual Order Picking Systems

    Get PDF
    In manual order picking systems, order pickers walk or drive through a distribution warehouse in order to collect items which are requested by (internal or external) customers. In order to perform these operations effciently, it is usually required that customer orders are combined into (more substantial) picking orders of limited size. The Order Batching Problem considered in this paper deals with the question of how a given set of customer orders should be combined such that the total length of all tours is minimized which are necessary to collect all items. The authors introduce two metaheuristic approaches for the solution of this problem; the rst one is based on Iterated Local Search, the second one on Ant Colony Optimization. In a series of extensive numerical experiments, the newly developed approaches are benchmarked against classic solution methods. It is demonstrated that the proposed methods are not only superior to existing methods, but provide solutions which may allow for operating distribution warehouses signicantly more effcient.Warehouse Management, Order Picking, Order Batching, Iterated Local Search, Ant Colony Optimization

    Performance Approximation and Design of Pick-and-Pass Order Picking Systems

    Get PDF
    In this paper, we discuss an approximation method based on G/G/m queuing network modeling using Whitt’s (1983) queuing network analyzer to analyze pick-and-pass order picking systems. The objective of this approximation method is to provide an instrument for obtaining rapid performance estimates (such as order lead time and station utilization) of the order picking system. The pick-and-pass system is decomposed into conveyor pieces and pick stations. Conveyor pieces have a constant processing time, whereas the service times at a pick station depend on the number of order lines in the order to be picked at the station, the storage policy at the station, and the working methods. Our approximation method appears to be sufficiently accurate for practical purposes. It can be used to rapidly evaluate the effects of the storage methods in pick stations, the number of order pickers at stations, the size of pick stations, the arrival process of customer orders, and the impact of batching and splitting orders on system performance.simulation;warehousing;order picking;queuing network;pick-and-pass

    Using simulation to analyze picker blocking in manual order picking systems

    Get PDF
    The rise of the e-commerce practice makes the warehouses be confronted with ever smaller orders that must be met ever faster, often within a 24-h period. This pressures the order picking process as the orders pickers' workload becomes higher and higher, leading subsequently to congestion in the warehouse and impacting its productivity. It is therefore crucial to determine which order batching and picking policies enhance the performance of order picking activities. This paper carries out an intensive simulation study to examine the performance of different order picking policies with batching in a wide-aisle warehouse with a low-level picker-to-parts system. The performance of the system is measured in terms of total travelled distance, number of collisions between operators (congestion) and order lead times. A full factorial design is set up and the simulation output is statistically analyzed. The results are reported and thoroughly discussed

    Design and Control of Warehouse Order Picking: a literature review

    Get PDF
    Order picking has long been identified as the most labour-intensive and costly activity for almost every warehouse; the cost of order picking is estimated to be as much as 55% of the total warehouse operating expense. Any underperformance in order picking can lead to unsatisfactory service and high operational cost for its warehouse, and consequently for the whole supply chain. In order to operate efficiently, the orderpicking process needs to be robustly designed and optimally controlled. This paper gives a literature overview on typical decision problems in design and control of manual order-picking processes. We focus on optimal (internal) layout design, storage assignment methods, routing methods, order batching and zoning. The research in this area has grown rapidly recently. Still, combinations of the above areas have hardly been explored. Order-picking system developments in practice lead to promising new research directions.Order picking;Logistics;Warehouse Management

    Perbaikan Produktivitas Picking Order dengan Metode Routing Heuristic di Gudang Pusat Suku Cadang Otomotif

    Get PDF
    Order picking is a process to fulfill customer order, with fast timing and provide high customer satisfaction. The order picking process is the highest cost in both manual and automatic systems, so it is necessary to improve efficiency and productivity. This study is aims to improve the productivity of order picking by shortening the distance. By choosing heuristic method using the application of interactive warehouse program, it is found that heuristic routing method can shorten picking distance. So, the routing heuristic method can increase the productivity of picking orders
    corecore