3 research outputs found

    Orchestrating computational algebra components into a high-performance parallel system

    No full text
    This paper demonstrates that it is possible to obtain good, scalable parallel performance by coordinating multiple instances of unaltered sequential computational algebra systems in order to deliver a single parallel system. The paper presents the first substantial parallel performance results for SymGrid-Par, a system that orchestrates computational algebra components into a high-performance parallel application. We show that SymGrid-Par is capable of exploiting different parallel/multicore architectures without any change to the computational algebra component. Ultimately, our intention is to extend our system so that it is capable of orchestrating heterogeneous computations across a high-performance computational grid

    Parallelism without pain: orchestrating computational algebra components into a high-performance parallel system

    No full text
    This paper describes a very high-level approach that aims to orchestrate sequential components written using high-level domain-specific programming into high-performance parallel applications. By achieving this goal, we hope to make parallel programming more accessible to experts in mathematics, engineering and other domains. A key feature of our approach is that parallelism is achieved without any modification to the underlying sequential computational algebra systems, or to the user-level components: rather, all orchestration is performed at an outer level, with sequential components linked through a standard communication protocol, the Symbolic Computing Software Composability Protocol, SCSCP. Despite the generality of our approach, our results show that we are able to achieve very good, and even, in some cases, super-linear, speedups on clusters of commodity workstations: up to a factor of 33.4 on a 28-processor cluster. We are, moreover, able to parallelise a wider variety of problem, and achieve higher performance than typical specialist parallel computational algebra implementations
    corecore