15,709 research outputs found

    Media-Based MIMO: A New Frontier in Wireless Communications

    Full text link
    The idea of Media-based Modulation (MBM), is based on embedding information in the variations of the transmission media (channel state). This is in contrast to legacy wireless systems where data is embedded in a Radio Frequency (RF) source prior to the transmit antenna. MBM offers several advantages vs. legacy systems, including "additivity of information over multiple receive antennas", and "inherent diversity over a static fading channel". MBM is particularly suitable for transmitting high data rates using a single transmit and multiple receive antennas (Single Input-Multiple Output Media-Based Modulation, or SIMO-MBM). However, complexity issues limit the amount of data that can be embedded in the channel state using a single transmit unit. To address this shortcoming, the current article introduces the idea of Layered Multiple Input-Multiple Output Media-Based Modulation (LMIMO-MBM). Relying on a layered structure, LMIMO-MBM can significantly reduce both hardware and algorithmic complexities, as well as the training overhead, vs. SIMO-MBM. Simulation results show excellent performance in terms of Symbol Error Rate (SER) vs. Signal-to-Noise Ratio (SNR). For example, a 4Γ—164\times 16 LMIMO-MBM is capable of transmitting 3232 bits of information per (complex) channel-use, with SER ≃10βˆ’5 \simeq 10^{-5} at Eb/N0β‰ƒβˆ’3.5E_b/N_0\simeq -3.5dB (or SER ≃10βˆ’4 \simeq 10^{-4} at Eb/N0=βˆ’4.5E_b/N_0=-4.5dB). This performance is achieved using a single transmission and without adding any redundancy for Forward-Error-Correction (FEC). This means, in addition to its excellent SER vs. energy/rate performance, MBM relaxes the need for complex FEC structures, and thereby minimizes the transmission delay. Overall, LMIMO-MBM provides a promising alternative to MIMO and Massive MIMO for the realization of 5G wireless networks.Comment: 26 pages, 11 figures, additional examples are given to further explain the idea of Media-Based Modulation. Capacity figure adde

    Beamforming Optimization for Full-Duplex Wireless-powered MIMO Systems

    Get PDF
    We propose techniques for optimizing transmit beamforming in a full-duplex multiple-input-multiple-output (MIMO) wireless-powered communication system, which consists of two phases. In the first phase, the wireless-powered mobile station (MS) harvests energy using signals from the base station (BS), whereas in the second phase, both MS and BS communicate to each other in a full-duplex mode. When complete instantaneous channel state information (CSI) is available, the BS beamformer and the time-splitting (TS) parameter of energy harvesting are jointly optimized in order to obtain the BS-MS rate region. The joint optimization problem is non-convex, however, a computationally efficient optimum technique, based upon semidefinite relaxation and line-search, is proposed to solve the problem. A sub-optimum zero-forcing approach is also proposed, in which a closed-form solution of TS parameter is obtained. When only second-order statistics of transmit CSI is available, we propose to maximize the ergodic information rate at the MS, while maintaining the outage probability at the BS below a certain threshold. An upper bound for the outage probability is also derived and an approximate convex optimization framework is proposed for efficiently solving the underlying non-convex problem. Simulations demonstrate the advantages of the proposed methods over the sub-optimum and half-duplex ones.Comment: 14 pages, accepte

    Rate Splitting for MIMO Wireless Networks: A Promising PHY-Layer Strategy for LTE Evolution

    Get PDF
    MIMO processing plays a central part towards the recent increase in spectral and energy efficiencies of wireless networks. MIMO has grown beyond the original point-to-point channel and nowadays refers to a diverse range of centralized and distributed deployments. The fundamental bottleneck towards enormous spectral and energy efficiency benefits in multiuser MIMO networks lies in a huge demand for accurate channel state information at the transmitter (CSIT). This has become increasingly difficult to satisfy due to the increasing number of antennas and access points in next generation wireless networks relying on dense heterogeneous networks and transmitters equipped with a large number of antennas. CSIT inaccuracy results in a multi-user interference problem that is the primary bottleneck of MIMO wireless networks. Looking backward, the problem has been to strive to apply techniques designed for perfect CSIT to scenarios with imperfect CSIT. In this paper, we depart from this conventional approach and introduce the readers to a promising strategy based on rate-splitting. Rate-splitting relies on the transmission of common and private messages and is shown to provide significant benefits in terms of spectral and energy efficiencies, reliability and CSI feedback overhead reduction over conventional strategies used in LTE-A and exclusively relying on private message transmissions. Open problems, impact on standard specifications and operational challenges are also discussed.Comment: accepted to IEEE Communication Magazine, special issue on LTE Evolutio
    • …
    corecore