3 research outputs found

    Distortion-Tolerant Communications with Correlated Information

    Get PDF
    This dissertation is devoted to the development of distortion-tolerant communication techniques by exploiting the spatial and/or temporal correlation in a broad range of wireless communication systems under various system configurations. Signals observed in wireless communication systems are often correlated in the spatial and/or temporal domains, and the correlation can be used to facilitate system designs and to improve system performance. First, the optimum node density, i.e., the optimum number of nodes in a unit area, is identified by utilizing the spatial data correlation in the one- and two-dimensional wireless sensor networks (WSNs), under the constraint of fixed power per unit area. The WSNs distortion is quantized as the mean square error between the original and the reconstructed signals. Then we extend the analysis into WSNs with spatial-temporally correlated data. The optimum sampling in the space and time domains is derived. The analytical optimum results can provide insights and guidelines on the design of practical WSNs. Second, distributed source coding schemes are developed by exploiting the data correlation in a wireless network with spatially distributed sources. A new symmetric distributed joint source-channel coding scheme (DJSCC) is proposed by utilizing the spatial source correlation. Then the DJSCC code is applied to spatial-temporally correlated sources. The temporal correlated data is modeled as the Markov chain. Correspondingly, two decoding algorithms are proposed. The first multi-codeword message passing algorithm (MCMP) is designed for spatially correlated memoryless sources. In the second algorithm, a hidden Markov decoding process is added to the MCMP decoder to effectively exploit the data correlation in both the space and time domains. Third, we develop distortion-tolerant high mobility wireless communication systems by considering correlated channel state information (CSI) in the time domain, and study the optimum designs with imperfect CSI. The pilot-assisted channel estimation mean square error is expressed as a closed-form expression of various system parameters through asymptotic analysis. Based on the statistical properties of the channel estimation error, we quantify the impacts of imperfect CSI on system performance by developing the analytical symbol error rate and a spectral efficiency lower bound of the communication system

    Energy-aware Sparse Sensing of Spatial-temporally Correlated Random Fields

    Get PDF
    This dissertation focuses on the development of theories and practices of energy aware sparse sensing schemes of random fields that are correlated in the space and/or time domains. The objective of sparse sensing is to reduce the number of sensing samples in the space and/or time domains, thus reduce the energy consumption and complexity of the sensing system. Both centralized and decentralized sensing schemes are considered in this dissertation. Firstly we study the problem of energy efficient Level set estimation (LSE) of random fields correlated in time and/or space under a total power constraint. We consider uniform sampling schemes of a sensing system with a single sensor and a linear sensor network with sensors distributed uniformly on a line where sensors employ a fixed sampling rate to minimize the LSE error probability in the long term. The exact analytical cost functions and their respective upper bounds of these sampling schemes are developed by using an optimum thresholding-based LSE algorithm. The design parameters of these sampling schemes are optimized by minimizing their respective cost functions. With the analytical results, we can identify the optimum sampling period and/or node distance that can minimize the LSE error probability. Secondly we propose active sparse sensing schemes with LSE of a spatial-temporally correlated random field by using a limited number of spatially distributed sensors. In these schemes a central controller is designed to dynamically select a limited number of sensing locations according to the information revealed from past measurements,and the objective is to minimize the expected level set estimation error.The expected estimation error probability is explicitly expressed as a function of the selected sensing locations, and the results are used to formulate the optimal sensing location selection problem as a combinatorial problem. Two low complexity greedy algorithms are developed by using analytical upper bounds of the expected estimation error probability. Lastly we study the distributed estimations of a spatially correlated random field with decentralized wireless sensor networks (WSNs). We propose a distributed iterative estimation algorithm that defines the procedures for both information propagation and local estimation in each iteration. The key parameters of the algorithm, including an edge weight matrix and a sample weight matrix, are designed by following the asymptotically optimum criteria. It is shown that the asymptotically optimum performance can be achieved by distributively projecting the measurement samples into a subspace related to the covariance matrices of data and noise samples
    corecore