2 research outputs found

    TCP/IP traffic over ATM network with ABR flow and congestion control

    Get PDF
    Most traffics over the existing ATM network are generated by applications running over TCP/IP protocol stack. In the near future, the success of ATM technology will depend largely on how well it supports the huge legacy of existing TCP/IP applications. In this thesis, we study and compare the performance of TCP/IP traffic running on different rate based ABR flow control algorithms such as EFCI, ERICA and FMMRA by extensive simulations. Infinite source-end traffic behavior is chosen to represent, FTP application running on TCP/IP. Background VBR traffic with different ON-OFF frequency is introduced to produce transient network states as well as congestion. The simulations produce many insights on issues such as: ABR queue length in congested ATM switch, source-end ACR (Allowed Cell Rate), link utilization at congestion point, efficient end to end TCP throughput, the TCP congestion control window size, and the TCP round trip time. Based on the simulation results, zero cell loss switch buffer requirement of the three algorithms are compared, and the fairness of ABR bandwidth allocation among TCP connections are analyzed. The interaction between the TCP layer and the ATM layer flow and congestion control mechanism is analyzed. Our simulation results show that in order to get a good TCP throughput and affordable switch buffer requirement, some kind of switch queue length monitoring and control mechanism is necessary in the ABR. congestion algorithm

    Congestion control for transmission control protocol (TCP) over asynchronous transfer mode (ATM) networks

    Get PDF
    Performance of Transmission Control Protocol (TCP) connections in high-speed Asynchronous Transfer Model (ATM) networks is of great importance due to the widespread use of the TCP/IP protocol for data transfers and the increasing deployment of ATM networks. When TCP runs on top of ATM network, the TCP window based and ATM rate based congestion control mechanisms interact with each other. TCP performance may be degraded by the mismatch between the two mechanisms. We study the TCP performance over ATM networks with Unspecified Bit Rate (UBR) service and Available Bit Rate (ABR) service under various congestion control mechanisms by using simulation techniques, and propose a novel congestion control algorith, "Fair Intelligent Congestion Control", which significantly enhances the congestion control efficiency and improves the TCP performance over ATM networks
    corecore