4 research outputs found

    Optimum deployment of multiple UAVs for coverage area maximization in the presence of co-channel interference

    Get PDF
    The use of unmanned aerial vehicle (UAV) as aerial base stations can provide wireless communication services in the form of UAV-based small cells (USCs). Thus, the major design challenge that needs to be addressed is the coverage maximization of such USCs in the presence of co-channel interference generated by multiple UAVs operating within a specific target area. Consequently, the efficient deployment strategy is imperative for USCs while optimizing the coverage area performance to compensate the impact of interference. To this end, this paper presents a coordinated multi-UAV strategy in two scenarios. In the first scenario, symmetric placement of UAVs is assumed at a common optimal altitude and transmit power. In the second scenario, asymmetric deployment of UAVs with different altitudes and transmit powers is assumed. Then, the coverage area performance is investigated as a function of separation distance between UAVs which are deployed in a certain geographical area to satisfy a target signal-to-interference-plus-noise ratio (SINR) at the cell boundary. Finally, the system-level performance of a boundary user is studied in terms of the coverage probability. Numerical results unveils that the SINR threshold, the separation distance, and the number of UAVs and their formations should be carefully selected to achieve the maximum coverage area inside and to reduce the unnecessary expansion outside the target area. Thus, this paper provides important design guidelines for the deployment of multiple UAVs in presence of co-channel interference

    Optimum Deployment of Multiple UAVs for Coverage Area Maximization in the Presence of Co-Channel Interference

    No full text
    corecore