7,493 research outputs found

    Adaptive Tag Selection for Image Annotation

    Full text link
    Not all tags are relevant to an image, and the number of relevant tags is image-dependent. Although many methods have been proposed for image auto-annotation, the question of how to determine the number of tags to be selected per image remains open. The main challenge is that for a large tag vocabulary, there is often a lack of ground truth data for acquiring optimal cutoff thresholds per tag. In contrast to previous works that pre-specify the number of tags to be selected, we propose in this paper adaptive tag selection. The key insight is to divide the vocabulary into two disjoint subsets, namely a seen set consisting of tags having ground truth available for optimizing their thresholds and a novel set consisting of tags without any ground truth. Such a division allows us to estimate how many tags shall be selected from the novel set according to the tags that have been selected from the seen set. The effectiveness of the proposed method is justified by our participation in the ImageCLEF 2014 image annotation task. On a set of 2,065 test images with ground truth available for 207 tags, the benchmark evaluation shows that compared to the popular top-kk strategy which obtains an F-score of 0.122, adaptive tag selection achieves a higher F-score of 0.223. Moreover, by treating the underlying image annotation system as a black box, the new method can be used as an easy plug-in to boost the performance of existing systems

    Differentiable Unbiased Online Learning to Rank

    Full text link
    Online Learning to Rank (OLTR) methods optimize rankers based on user interactions. State-of-the-art OLTR methods are built specifically for linear models. Their approaches do not extend well to non-linear models such as neural networks. We introduce an entirely novel approach to OLTR that constructs a weighted differentiable pairwise loss after each interaction: Pairwise Differentiable Gradient Descent (PDGD). PDGD breaks away from the traditional approach that relies on interleaving or multileaving and extensive sampling of models to estimate gradients. Instead, its gradient is based on inferring preferences between document pairs from user clicks and can optimize any differentiable model. We prove that the gradient of PDGD is unbiased w.r.t. user document pair preferences. Our experiments on the largest publicly available Learning to Rank (LTR) datasets show considerable and significant improvements under all levels of interaction noise. PDGD outperforms existing OLTR methods both in terms of learning speed as well as final convergence. Furthermore, unlike previous OLTR methods, PDGD also allows for non-linear models to be optimized effectively. Our results show that using a neural network leads to even better performance at convergence than a linear model. In summary, PDGD is an efficient and unbiased OLTR approach that provides a better user experience than previously possible.Comment: Conference on Information and Knowledge Management 201

    Soft peer review: social software and distributed scientific evaluation

    Get PDF
    The debate on the prospects of peer-review in the Internet age and the increasing criticism leveled against the dominant role of impact factor indicators are calling for new measurable criteria to assess scientific quality. Usage-based metrics offer a new avenue to scientific quality assessment but face the same risks as first generation search engines that used unreliable metrics (such as raw traffic data) to estimate content quality. In this article I analyze the contribution that social bookmarking systems can provide to the problem of usage-based metrics for scientific evaluation. I suggest that collaboratively aggregated metadata may help fill the gap between traditional citation-based criteria and raw usage factors. I submit that bottom-up, distributed evaluation models such as those afforded by social bookmarking will challenge more traditional quality assessment models in terms of coverage, efficiency and scalability. Services aggregating user-related quality indicators for online scientific content will come to occupy a key function in the scholarly communication system

    Accurator: Nichesourcing for Cultural Heritage

    Full text link
    With more and more cultural heritage data being published online, their usefulness in this open context depends on the quality and diversity of descriptive metadata for collection objects. In many cases, existing metadata is not adequate for a variety of retrieval and research tasks and more specific annotations are necessary. However, eliciting such annotations is a challenge since it often requires domain-specific knowledge. Where crowdsourcing can be successfully used for eliciting simple annotations, identifying people with the required expertise might prove troublesome for tasks requiring more complex or domain-specific knowledge. Nichesourcing addresses this problem, by tapping into the expert knowledge available in niche communities. This paper presents Accurator, a methodology for conducting nichesourcing campaigns for cultural heritage institutions, by addressing communities, organizing events and tailoring a web-based annotation tool to a domain of choice. The contribution of this paper is threefold: 1) a nichesourcing methodology, 2) an annotation tool for experts and 3) validation of the methodology and tool in three case studies. The three domains of the case studies are birds on art, bible prints and fashion images. We compare the quality and quantity of obtained annotations in the three case studies, showing that the nichesourcing methodology in combination with the image annotation tool can be used to collect high quality annotations in a variety of domains and annotation tasks. A user evaluation indicates the tool is suited and usable for domain specific annotation tasks

    Image Labeling on a Network: Using Social-Network Metadata for Image Classification

    Full text link
    Large-scale image retrieval benchmarks invariably consist of images from the Web. Many of these benchmarks are derived from online photo sharing networks, like Flickr, which in addition to hosting images also provide a highly interactive social community. Such communities generate rich metadata that can naturally be harnessed for image classification and retrieval. Here we study four popular benchmark datasets, extending them with social-network metadata, such as the groups to which each image belongs, the comment thread associated with the image, who uploaded it, their location, and their network of friends. Since these types of data are inherently relational, we propose a model that explicitly accounts for the interdependencies between images sharing common properties. We model the task as a binary labeling problem on a network, and use structured learning techniques to learn model parameters. We find that social-network metadata are useful in a variety of classification tasks, in many cases outperforming methods based on image content.Comment: ECCV 2012; 14 pages, 4 figure

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application
    • …
    corecore