2 research outputs found

    Chipeless Substrate Integrated Waveguide Tag for a Millimeter Wave Identification

    Get PDF
    RÉSUMÉ Présentement, l'identification à ondes millimétriques (MMID) est une technologie émergente qui pourrait être présentée comme une évolution de l'identification par radiofréquence (RFID) qui fonctionne à des bandes de fréquence relativement basse aux bandes de fréquence à ondes millimétrique. Ces bandes de fréquences offrent les avantages d’avoir des antennes de plus petite taille, un débit de données plus élevé et des modules de lecteur plus compacts. Également, des antennes à faisceau étroit peuvent être mises en oeuvre afin d’assurer la détection de l'emplacement. Le concept MMID peut être intégré avec les applications futures de la technologie à ondes millimétriques dans la communication sans fil tels que 5G. Le guide d'ondes intégré au substrat (SIW) avec son blindage naturel présente des performances exceptionnelles dans la conception de circuits en bande d'ondes millimétriques, le SIW peut être intégré facilement avec d’autres circuits planaires (circuits passifs ou actifs). Des tags sans puce MMID basé sur la technologie SIW sont présentés dans ce mémoire. Tout d'abord, un système MMID basé sur une modulation dans le domaine temporel est étudié. Un modèle théorique généralisé est construit prenant en compte le phénomène de multireflection existant dans un tag basé sur la technique de réflectométrie à dimension temporelle (TDR). Le bilan de liaison du système TDR MMID est étudié. Un procédé d'égalisation qui dépend de la largeur de l'impulsion, les caractéristiques de la ligne de transmission, l'intervalle temporel entre deux bits, la sensibilité du lecteur et de la fréquence de fonctionnement du système MMID est proposé dans le but de définir le nombre maximal de bits possible par rapport à la distance. Cette méthode définie aussi la valeur exact du coefficient de réflexion de chaque discontinuité du code binaire. Deuxièmement, la propriété de la structure déployée SIW est étudiée. L'étiquette SIW proposée, composée de 4 iris symétriques dans le plan H avec antenne à fente intégrée, est étudiée théoriquement et expérimentalement. Une configuration de mesure est construite pour lire la balise fabriquée, et les résultats de mesure sont en bon accord avec les homologues théoriques. On étudie le guide d'ondes intégré au support demi-mode (HMSIW) qui peut réduire la largeur du guide d'ondes de moitié. L'étiquette HMSIW conçue se compose de 4 iris simple dans le plan H avec l'antenne à fente intégrée HMSIW. En outre, on étudie le guide d'onde intégré à substrat en ondes lentes (SW-SIW) afin de réduire la vitesse du groupe de SIW.----------ABSTRACT Presently, millimeter-wave identification (MMID) becomes an emerging technology as an alternative development of the conventional radiofrequency identification (RFID), which extends operating frequency from low-frequency band to millimeter-wave range. Over these millimeter-wave frequency bands, the advantages of smaller antenna size, higher data rate and more compact reader module could be realized and the function of location sensing could be implemented through narrow-beam antennas. Furthermore, the MMID concept could provide a compatible design platform in connection with the future applications of millimeter-wave technology in wireless communication such as 5G. Substrate integrated waveguide (SIW) with its self-shielding nature presents an outstanding performance in circuit design over the millimeter-wave band, SIW can be integrated with planar circuits (passive or active). Chipless MMID tag based on SIW technology is presented in this dissertation. Firstly, MMID system based on time-domain modulation is studied, and a generalized theoretical modeling is developed, which accounts for the existing multireflection issue during the tag design. An equalization method is examined based on the link budget of the TDR MMID system, which could be used for finding the maximum encodable bits versus the distance. Secondly, the property of the deployed SIW structure is investigated. The proposed SIW tag, consisting of 4 symmetrical iris in H-plane with integrated slot-antenna, is studied theoretically and experimentally. A measurement setup is constructed to read the fabricated tag, and measurement results are in good agreement with theoretical counterparts. Half mode substrate integrated waveguide (HMSIW) that can reduce the waveguide width by half is investigated. The designed HMSIW tag consists of 4 single iris in H-plane with the integrated HMSIW slot-antenna. In addition, slow-wave substrate integrated waveguide (SW-SIW) is studied in order to reduce the group velocity of SIW. The designed SW-SIW tag consists of 4 bits information by changing the height of the blind vias. A novel slow-wave half mode substrate integrated waveguide (SW-HWSIW) is proposed in order to further minimize the size of the MMID tag. The designed SW-HMSIW tag also shows a good performance over the operating frequency of the MMID system. Finally, the comparison of these four types of tag is conducted to present the difference

    Nanotechnology enabled microfluidics/Raman spectroscopy systems for bio applications

    Get PDF
    The vision for this PhD research project was born out of a desire to study the in situ behaviour of suspended nano-materials; specifically, implementing a Raman microscopy system for investigating suspended materials in the microfluidic environment. The author developed a set of innovative research goals to achieve this vision, which include: (1) forming a suitable microfluidic system which can apply controlled forces onto the suspended materials on demand, (2) implementing Raman microscopy to study the behaviour of particles under the influence of such forces while inside the microfluidic system and (3) incorporating the developed microfluidic system for investigating suspended materials of low concentration, including biological cells and surface-enhanced Raman scattering studies. The author implemented the research in three distinct stages such that the work in earlier stages could provide the platform for the future work. In the first stage, the author designed a microfluidic dielectrophoresis platform consisting of curved microelectrodes. This platform was integrated with a Raman microscopy system for creating a novel system capable of detecting suspended particles of various types and spatial concentrations. The system was benchmarked using polystyrene and tungsten trioxide suspended particles, and the outcomes of this novel integrated system showed its strong potential for the determination of suspended particles types and their direct mapping, with several unique advantages over conventional optical systems. In the second stage of this research, the author developed a novel microfluidic-DEP system that could manipulate suspended silver nanoparticles’ spacing in three dimensions. Silver nanoparticles are capable of producing strong surface enhanced Raman scattering (SERS) signals, allowing the Raman system to detect very low concentrations of suspended analytes. DEP provided facile control of the positions and spacings of the suspended silver nanoparticles, and allowed for the creation of SERS hot-spots. The system was studied to determine the optimum DEP and microfluidic flow parameters for generating SERS, and the author was able to demonstrate this as a reversible process. This stage of the research used dipicolinic acid as the target analyte, and the system was demonstrated to have detection limits as small as ~1 ppm concentration levels. In the third stage, the microfluidic-DEP platform was used for trapping and isolating yeast cells. Silver nanoparticles were again used for SERS applications. The trapped cells were interrogated by the Raman system in order to obtain deeper understandings of cells functionalities and their communications under various physical conditions: live vs. dead and isolated vs. grouped. Live vs. dead experiments were conducted as a benchmark, to observe whether SERS is capable of differentiating cells based on the life condition. The research was expanded to study cells that were isolated from one another, and compared those Raman signatures to those from cells in grouped clusters. The author was able to extract unique information from such studies, including the importance of glycine, or proteins with glycine subunits, in the proliferation of yeast cells. The developed system showed great potential as a universal platform for the in situ study of cells, their communications and functionalities
    corecore