12 research outputs found

    On Minimizing the Maximum Broadcast Decoding Delay for Instantly Decodable Network Coding

    Full text link
    In this paper, we consider the problem of minimizing the maximum broadcast decoding delay experienced by all the receivers of generalized instantly decodable network coding (IDNC). Unlike the sum decoding delay, the maximum decoding delay as a definition of delay for IDNC allows a more equitable distribution of the delays between the different receivers and thus a better Quality of Service (QoS). In order to solve this problem, we first derive the expressions for the probability distributions of maximum decoding delay increments. Given these expressions, we formulate the problem as a maximum weight clique problem in the IDNC graph. Although this problem is known to be NP-hard, we design a greedy algorithm to perform effective packet selection. Through extensive simulations, we compare the sum decoding delay and the max decoding delay experienced when applying the policies to minimize the sum decoding delay [1] and our policy to reduce the max decoding delay. Simulations results show that our policy gives a good agreement among all the delay aspects in all situations and outperforms the sum decoding delay policy to effectively minimize the sum decoding delay when the channel conditions become harsher. They also show that our definition of delay significantly improve the number of served receivers when they are subject to strict delay constraints

    Completion Time Reduction in Instantly Decodable Network Coding Through Decoding Delay Control

    Full text link
    For several years, the completion time and decoding delay problems in Instantly Decodable Network Coding (IDNC) were considered separately and were thought to completely act against each other. Recently, some works aimed to balance the effects of these two important IDNC metrics but none of them studied a further optimization of one by controlling the other. In this paper, we study the effect of controlling the decoding delay to reduce the completion time below its currently best known solution. We first derive the decoding-delay-dependent expressions of the users' and overall completion times. Although using such expressions to find the optimal overall completion time is NP-hard, we design a novel heuristic that minimizes the probability of increasing the maximum of these decoding-delay-dependent completion time expressions after each transmission through a layered control of their decoding delays. Simulation results show that this new algorithm achieves both a lower mean completion time and mean decoding delay compared to the best known heuristic for completion time reduction. The gap in performance becomes significant for harsh erasure scenarios

    Rate Aware Instantly Decodable Network Codes

    Get PDF
    This paper addresses the problem of reducing the delivery time of data messages to cellular users using instantly decodable network coding (IDNC) with physical-layer rate awareness. While most of the existing literature on IDNC does not consider any physical layer complications and abstract the model as equally slotted time for all users, this paper proposes a cross-layer scheme that incorporates the different channel rates of the various users in the decision process of both the transmitted message combinations and the rates with which they are transmitted. The consideration of asymmetric rates for receivers reflects more practical application scenarios and introduces a new trade-off between the choice of coding combinations for various receivers and the broadcasting rate for achieving shorter completion time. The completion time minimization problem in such scenario is first shown to be intractable. The problem is, thus, approximated by reducing, at each transmission, the increase of an anticipated version of the completion time. The paper solves the problem by formulating it as a maximum weight clique problem over a newly designed rate aware IDNC (RA-IDNC) graph. The highest weight clique in the created graph being potentially not unique, the paper further suggests a multi-layer version of the proposed solution to improve the obtained results from the employed completion time approximation. Simulation results indicate that the cross-layer design largely outperforms the uncoded transmissions strategies and the classical IDNC scheme

    Delay Minimization for Instantly Decodable Network Coding in Persistent Channels with Feedback Intermittence

    Full text link
    In this paper, we consider the problem of minimizing the multicast decoding delay of generalized instantly decodable network coding (G-IDNC) over persistent forward and feedback erasure channels with feedback intermittence. In such an environment, the sender does not always receive acknowledgement from the receivers after each transmission. Moreover, both the forward and feedback channels are subject to persistent erasures, which can be modelled by a two state (good and bad states) Markov chain known as Gilbert-Elliott channel (GEC). Due to such feedback imperfections, the sender is unable to determine subsequent instantly decodable packets combination for all receivers. Given this harsh channel and feedback model, we first derive expressions for the probability distributions of decoding delay increments and then employ these expressions in formulating the minimum decoding problem in such environment as a maximum weight clique problem in the G-IDNC graph. We also show that the problem formulations in simpler channel and feedback models are special cases of our generalized formulation. Since this problem is NP-hard, we design a greedy algorithm to solve it and compare it to blind approaches proposed in literature. Through extensive simulations, our adaptive algorithm is shown to outperform the blind approaches in all situations and to achieve significant improvement in the decoding delay, especially when the channel is highly persisten

    Delay Reduction in Multi-Hop Device-to-Device Communication using Network Coding

    Full text link
    This paper considers the problem of reducing the broadcast decoding delay of wireless networks using instantly decodable network coding (IDNC) based device-to-device (D2D) communications. In a D2D configuration, devices in the network can help hasten the recovery of the lost packets of other devices in their transmission range by sending network coded packets. Unlike previous works that assumed fully connected network, this paper proposes a partially connected configuration in which the decision should be made not only on the packet combinations but also on the set of transmitting devices. First, the different events occurring at each device are identified so as to derive an expression for the probability distribution of the decoding delay. The joint optimization problem over the set of transmitting devices and the packet combinations of each is, then, formulated. The optimal solution of the joint optimization problem is derived using a graph theory approach by introducing the cooperation graph and reformulating the problem as a maximum weight clique problem in which the weight of each vertex is the contribution of the device identified by the vertex. Through extensive simulations, the decoding delay experienced by all devices in the Point to Multi-Point (PMP) configuration, the fully connected D2D (FC-D2D) configuration and the more practical partially connected D2D (PC-D2D) configuration are compared. Numerical results suggest that the PC-D2D outperforms the FC-D2D and provides appreciable gain especially for poorly connected networks
    corecore