315 research outputs found

    Mathematical optimization techniques for cognitive radar networks

    Get PDF
    This thesis discusses mathematical optimization techniques for waveform design in cognitive radars. These techniques have been designed with an increasing level of sophistication, starting from a bistatic model (i.e. two transmitters and a single receiver) and ending with a cognitive network (i.e. multiple transmitting and multiple receiving radars). The environment under investigation always features strong signal-dependent clutter and noise. All algorithms are based on an iterative waveform-filter optimization. The waveform optimization is based on convex optimization techniques and the exploitation of initial radar waveforms characterized by desired auto and cross-correlation properties. Finally, robust optimization techniques are introduced to account for the assumptions made by cognitive radars on certain second order statistics such as the covariance matrix of the clutter. More specifically, initial optimization techniques were proposed for the case of bistatic radars. By maximizing the signal to interference and noise ratio (SINR) under certain constraints on the transmitted signals, it was possible to iteratively optimize both the orthogonal transmission waveforms and the receiver filter. Subsequently, the above work was extended to a convex optimization framework for a waveform design technique for bistatic radars where both radars transmit and receive to detect targets. The method exploited prior knowledge of the environment to maximize the accumulated target return signal power while keeping the disturbance power to unity at both radar receivers. The thesis further proposes convex optimization based waveform designs for multiple input multiple output (MIMO) based cognitive radars. All radars within the system are able to both transmit and receive signals for detecting targets. The proposed model investigated two complementary optimization techniques. The first one aims at optimizing the signal to interference and noise ratio (SINR) of a specific radar while keeping the SINR of the remaining radars at desired levels. The second approach optimizes the SINR of all radars using a max-min optimization criterion. To account for possible mismatches between actual parameters and estimated ones, this thesis includes robust optimization techniques. Initially, the multistatic, signal-dependent model was tested against existing worst-case and probabilistic methods. These methods appeared to be over conservative and generic for the considered signal-dependent clutter scenario. Therefore a new approach was derived where uncertainty was assumed directly on the radar cross-section and Doppler parameters of the clutters. Approximations based on Taylor series were invoked to make the optimization problem convex and {subsequently} determine robust waveforms with specific SINR outage constraints. Finally, this thesis introduces robust optimization techniques for through-the-wall radars. These are also cognitive but rely on different optimization techniques than the ones previously discussed. By noticing the similarities between the minimum variance distortionless response (MVDR) problem and the matched-illumination one, this thesis introduces robust optimization techniques that consider uncertainty on environment-related parameters. Various performance analyses demonstrate the effectiveness of all the above algorithms in providing a significant increase in SINR in an environment affected by very strong clutter and noise

    Robust waveform design for multistatic cognitive radars

    Get PDF
    In this paper we propose robust waveform techniques for multistatic cognitive radars in a signal-dependent clutter environment. In cognitive radar design, certain second order statistics such as the covariance matrix of the clutter, are assumed to be known. However, exact knowledge of the clutter parameters is difficult to obtain in practical scenarios. Hence we consider the case of waveform design in the presence of uncertainty on the knowledge of the clutter environment and propose both worst-case and probabilistic robust waveform design techniques. Initially, we tested our multistatic, signaldependent model against existing worst-case and probabilistic methods. These methods appeared to be over conservative and generic for the considered scenario. We therefore derived a new approach where we assume uncertainty directly on the radar cross-section and Doppler parameters of the clutters. Accordingly, we propose a clutter-specific stochastic optimization that, by using Taylor series approximations, is able to determine robust waveforms with specific Signal to Interference and Noise Ratio (SINR) outage constraints

    Multi-Spectrally Constrained Low-PAPR Waveform Optimization for MIMO Radar Space-Time Adaptive Processing

    Full text link
    This paper focuses on the joint design of transmit waveforms and receive filters for airborne multiple-input-multiple-output (MIMO) radar systems in spectrally crowded environments. The purpose is to maximize the output signal-to-interference-plus-noise-ratio (SINR) in the presence of signal-dependent clutter. To improve the practicability of the radar waveforms, both a multi-spectral constraint and a peak-to-average-power ratio (PAPR) constraint are imposed. A cyclic method is derived to iteratively optimize the transmit waveforms and receive filters. In particular, to tackle the encountered non-convex constrained fractional programming in designing the waveforms (for fixed filters), we resort to the Dinkelbach's transform, minorization-maximization (MM), and leverage the alternating direction method of multipliers (ADMM). We highlight that the proposed algorithm can iterate from an infeasible initial point and the waveforms at convergence not only satisfy the stringent constraints, but also attain superior performance

    Multi-IRS-Aided Doppler-Tolerant Wideband DFRC System

    Get PDF
    peer reviewedIntelligent reflecting surface (IRS) is recognized as an enabler of future dual-function radar-communications (DFRC) by improving spectral efficiency, coverage, parameter estimation, and interference suppression. Prior studies on IRS-aided DFRC focus either on narrowband processing, single-IRS deployment, static targets, non-clutter scenario, or on the under-utilized line-of-sight (LoS) and non-line-of-sight (NLoS) paths. In this paper, we address the aforementioned shortcomings by optimizing a wideband DFRC system comprising multiple IRSs and a dual-function base station that jointly processes the LoS and NLoS wideband multi-carrier signals to improve both the communications SINR and the radar SINR in the presence of a moving target and clutter. We formulate the transmit, receive and IRS beamformer design as the maximization of the worst-case radar signal-to-interference-plus-noise ratio (SINR) subject to transmit power and communications SINR. We tackle this nonconvex problem under the alternating optimization framework, where the subproblems are solved by a combination of Dinkelbach algorithm, consensus alternating direction method of multipliers, and Riemannian steepest decent. Our numerical experiments show that the proposed multi-IRS-aided wideband DFRC provides over 4 dB radar SINR and 31.7% improvement in target detection over a single-IRS system

    Joint Range and Doppler Adaptive Processing for CBM based DFRC systems

    Full text link
    Recently, dual-function radar communication (DFRC) systems have been proposed to integrate radar and communication into one platform for spectrum sharing. Various signalling strategies have been proposed to embed communication information into the radar transmitted waveforms. Among these, complex beampattern modulation (CBM) embeds communication information into the complex transmit beampattens via changing the amplitude and phase of the beampatterns towards the communication receiver. The embedding of random communication information causes the clutter modulation and high range-Doppler sidelobe. What's more, transmitting different waveforms on a pulse to pulse basis degrades the radar target detection capacity when traditional sequential pulse compression (SPC) and moving-target detection (MTD) is utilized. In this paper, a minimum mean square error (MMSE) based filter, denoted as joint range and Doppler adaptive processing (JRDAP) is proposed. The proposed method estimates the targets' impulse response coefficients at each range-Doppler cell adaptively to suppress high range-Doppler sidelobe and clutter modulation. The performance of proposed method is very close to the full-dimension adaptive multiple pulses compression (AMPC) while reducing computational complexity greatly.Comment: 11 pages, 5 figure

    Coexistence Designs of Radar and Communication Systems in a Multi-path Scenario

    Full text link
    The focus of this study is on the spectrum sharing between multiple-input multiple-output (MIMO) communications and co-located MIMO radar systems in multi-path environments. The major challenge is to suppress the mutual interference between the two systems while combining the useful multi-path components received at each system. We tackle this challenge by jointly designing the communication precoder, radar transmit waveform and receive filter. Specifically, the signal-to-interference-plus-noise ratio (SINR) at the radar receiver is maximized subject to constraints on the radar waveform, communication rate and transmit power. The multi-path propagation complicates the expressions of the radar SINR and communication rate, leading to a non-convex problem. To solve it, a sub-optimal algorithm based on the alternating maximization is used to optimize the precoder, radar transmit waveform and receive filter iteratively. Simulation results are provided to demonstrate the effectiveness of the proposed design

    IRS-Aided Wideband Dual-Function Radar-Communications with Quantized Phase-Shifts

    Get PDF
    peer reviewedIntelligent reflecting surfaces (IRS) are increasingly considered as an emerging technology to assist wireless communications and target sensing. In this paper, we consider the quantized IRS-aided wideband dual-function radar-communications system with multi-carrier signaling. Specifically, the radar receive filter, frequency-dependent transmit beamforming and discrete phase-shifts are jointly designed to maximize the average signal-to-interference-plus-noise ratio (SINR) for radar while guaranteeing the communication SINR among all users. The resulting optimization problem has a fractional quartic objective function with difference of convex and discrete phase constraints and is, therefore, highly non-convex. Thus, we solve this problem via the alternating maximization framework, in which the alternating direction method of multipliers and Dinkelbach's algorithm are integrated to tackle the related subproblems. Numerical results demonstrate that the proposed method, even with the low-resolution IRS, achieves better sensing performance compared with non-IRS system
    • …
    corecore