2 research outputs found

    Towards Wi-Fi AP-Assisted Content Prefetching for On-Demand TV Series: A Reinforcement Learning Approach

    Full text link
    The emergence of smart Wi-Fi APs (Access Point), which are equipped with huge storage space, opens a new research area on how to utilize these resources at the edge network to improve users' quality of experience (QoE) (e.g., a short startup delay and smooth playback). One important research interest in this area is content prefetching, which predicts and accurately fetches contents ahead of users' requests to shift the traffic away during peak periods. However, in practice, the different video watching patterns among users, and the varying network connection status lead to the time-varying server load, which eventually makes the content prefetching problem challenging. To understand this challenge, this paper first performs a large-scale measurement study on users' AP connection and TV series watching patterns using real-traces. Then, based on the obtained insights, we formulate the content prefetching problem as a Markov Decision Process (MDP). The objective is to strike a balance between the increased prefetching&storage cost incurred by incorrect prediction and the reduced content download delay because of successful prediction. A learning-based approach is proposed to solve this problem and another three algorithms are adopted as baselines. In particular, first, we investigate the performance lower bound by using a random algorithm, and the upper bound by using an ideal offline approach. Then, we present a heuristic algorithm as another baseline. Finally, we design a reinforcement learning algorithm that is more practical to work in the online manner. Through extensive trace-based experiments, we demonstrate the performance gain of our design. Remarkably, our learning-based algorithm achieves a better precision and hit ratio (e.g., 80%) with about 70% (resp. 50%) cost saving compared to the random (resp. heuristic) algorithm

    Assessing the Feasibility of Web-Request Prediction Models on Mobile Platforms

    Full text link
    Prefetching web pages is a well-studied solution to reduce network latency by predicting users' future actions based on their past behaviors. However, such techniques are largely unexplored on mobile platforms. Today's privacy regulations make it infeasible to explore prefetching with the usual strategy of amassing large amounts of data over long periods and constructing conventional, "large" prediction models. Our work is based on the observation that this may not be necessary: Given previously reported mobile-device usage trends (e.g., repetitive behaviors in brief bursts), we hypothesized that prefetching should work effectively with "small" models trained on mobile-user requests collected during much shorter time periods. To test this hypothesis, we constructed a framework for automatically assessing prediction models, and used it to conduct an extensive empirical study based on over 15 million HTTP requests collected from nearly 11,500 mobile users during a 24-hour period, resulting in over 7 million models. Our results demonstrate the feasibility of prefetching with small models on mobile platforms, directly motivating future work in this area. We further introduce several strategies for improving prediction models while reducing the model size. Finally, our framework provides the foundation for future explorations of effective prediction models across a range of usage scenarios.Comment: MOBILESoft 202
    corecore