5,215 research outputs found

    Ultra-fast Deep Mixtures of Gaussian Process Experts

    Full text link
    Mixtures of experts have become an indispensable tool for flexible modelling in a supervised learning context, and sparse Gaussian processes (GP) have shown promise as a leading candidate for the experts in such models. In the present article, we propose to design the gating network for selecting the experts from such mixtures of sparse GPs using a deep neural network (DNN). This combination provides a flexible, robust, and efficient model which is able to significantly outperform competing models. We furthermore consider efficient approaches to computing maximum a posteriori (MAP) estimators of these models by iteratively maximizing the distribution of experts given allocations and allocations given experts. We also show that a recently introduced method called Cluster-Classify-Regress (CCR) is capable of providing a good approximation of the optimal solution extremely quickly. This approximation can then be further refined with the iterative algorithm

    Estimating Local Function Complexity via Mixture of Gaussian Processes

    Full text link
    Real world data often exhibit inhomogeneity, e.g., the noise level, the sampling distribution or the complexity of the target function may change over the input space. In this paper, we try to isolate local function complexity in a practical, robust way. This is achieved by first estimating the locally optimal kernel bandwidth as a functional relationship. Specifically, we propose Spatially Adaptive Bandwidth Estimation in Regression (SABER), which employs the mixture of experts consisting of multinomial kernel logistic regression as a gate and Gaussian process regression models as experts. Using the locally optimal kernel bandwidths, we deduce an estimate to the local function complexity by drawing parallels to the theory of locally linear smoothing. We demonstrate the usefulness of local function complexity for model interpretation and active learning in quantum chemistry experiments and fluid dynamics simulations.Comment: 19 pages, 16 figure
    • …
    corecore