679 research outputs found

    Optimizing Information Freshness in Wireless Networks under General Interference Constraints

    Full text link
    Age of information (AoI) is a recently proposed metric for measuring information freshness. AoI measures the time that elapsed since the last received update was generated. We consider the problem of minimizing average and peak AoI in a wireless networks, consisting of a set of source-destination links, under general interference constraints. When fresh information is always available for transmission, we show that a stationary scheduling policy is peak age optimal. We also prove that this policy achieves average age that is within a factor of two of the optimal average age. In the case where fresh information is not always available, and packet/information generation rate has to be controlled along with scheduling links for transmission, we prove an important separation principle: the optimal scheduling policy can be designed assuming fresh information, and independently, the packet generation rate control can be done by ignoring interference. Peak and average AoI for discrete time G/Ber/1 queue is analyzed for the first time, which may be of independent interest

    Minimizing the Age of Information in Wireless Networks with Stochastic Arrivals

    Full text link
    We consider a wireless network with a base station serving multiple traffic streams to different destinations. Packets from each stream arrive to the base station according to a stochastic process and are enqueued in a separate (per stream) queue. The queueing discipline controls which packet within each queue is available for transmission. The base station decides, at every time t, which stream to serve to the corresponding destination. The goal of scheduling decisions is to keep the information at the destinations fresh. Information freshness is captured by the Age of Information (AoI) metric. In this paper, we derive a lower bound on the AoI performance achievable by any given network operating under any queueing discipline. Then, we consider three common queueing disciplines and develop both an Optimal Stationary Randomized policy and a Max-Weight policy under each discipline. Our approach allows us to evaluate the combined impact of the stochastic arrivals, queueing discipline and scheduling policy on AoI. We evaluate the AoI performance both analytically and using simulations. Numerical results show that the performance of the Max-Weight policy is close to the analytical lower bound

    Optimizing Age of Information in Wireless Networks with Perfect Channel State Information

    Full text link
    Age of information (AoI), defined as the time elapsed since the last received update was generated, is a newly proposed metric to measure the timeliness of information updates in a network. We consider AoI minimization problem for a network with general interference constraints, and time varying channels. We propose two policies, namely, virtual-queue based policy and age-based policy when the channel state is available to the network scheduler at each time step. We prove that the virtual-queue based policy is nearly optimal, up to a constant additive factor, and the age-based policy is at-most factor 4 away from optimality. Comparing with our previous work, which derived age optimal policies when channel state information is not available to the scheduler, we demonstrate a 4 fold improvement in age due to the availability of channel state information
    • …
    corecore