448 research outputs found

    Palgol: A High-Level DSL for Vertex-Centric Graph Processing with Remote Data Access

    Full text link
    Pregel is a popular distributed computing model for dealing with large-scale graphs. However, it can be tricky to implement graph algorithms correctly and efficiently in Pregel's vertex-centric model, especially when the algorithm has multiple computation stages, complicated data dependencies, or even communication over dynamic internal data structures. Some domain-specific languages (DSLs) have been proposed to provide more intuitive ways to implement graph algorithms, but due to the lack of support for remote access --- reading or writing attributes of other vertices through references --- they cannot handle the above mentioned dynamic communication, causing a class of Pregel algorithms with fast convergence impossible to implement. To address this problem, we design and implement Palgol, a more declarative and powerful DSL which supports remote access. In particular, programmers can use a more declarative syntax called chain access to naturally specify dynamic communication as if directly reading data on arbitrary remote vertices. By analyzing the logic patterns of chain access, we provide a novel algorithm for compiling Palgol programs to efficient Pregel code. We demonstrate the power of Palgol by using it to implement several practical Pregel algorithms, and the evaluation result shows that the efficiency of Palgol is comparable with that of hand-written code.Comment: 12 pages, 10 figures, extended version of APLAS 2017 pape

    GiViP: A Visual Profiler for Distributed Graph Processing Systems

    Full text link
    Analyzing large-scale graphs provides valuable insights in different application scenarios. While many graph processing systems working on top of distributed infrastructures have been proposed to deal with big graphs, the tasks of profiling and debugging their massive computations remain time consuming and error-prone. This paper presents GiViP, a visual profiler for distributed graph processing systems based on a Pregel-like computation model. GiViP captures the huge amount of messages exchanged throughout a computation and provides an interactive user interface for the visual analysis of the collected data. We show how to take advantage of GiViP to detect anomalies related to the computation and to the infrastructure, such as slow computing units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Scalable Facility Location for Massive Graphs on Pregel-like Systems

    Full text link
    We propose a new scalable algorithm for facility location. Facility location is a classic problem, where the goal is to select a subset of facilities to open, from a set of candidate facilities F , in order to serve a set of clients C. The objective is to minimize the total cost of opening facilities plus the cost of serving each client from the facility it is assigned to. In this work, we are interested in the graph setting, where the cost of serving a client from a facility is represented by the shortest-path distance on the graph. This setting allows to model natural problems arising in the Web and in social media applications. It also allows to leverage the inherent sparsity of such graphs, as the input is much smaller than the full pairwise distances between all vertices. To obtain truly scalable performance, we design a parallel algorithm that operates on clusters of shared-nothing machines. In particular, we target modern Pregel-like architectures, and we implement our algorithm on Apache Giraph. Our solution makes use of a recent result to build sketches for massive graphs, and of a fast parallel algorithm to find maximal independent sets, as building blocks. In so doing, we show how these problems can be solved on a Pregel-like architecture, and we investigate the properties of these algorithms. Extensive experimental results show that our algorithm scales gracefully to graphs with billions of edges, while obtaining values of the objective function that are competitive with a state-of-the-art sequential algorithm
    • …
    corecore