1,558 research outputs found

    Enhanced Search Method for Ontology Classification

    Get PDF
    The web ontology language (OWL) has become a W3C recommendation to publish and share ontologies on the semantic web. In order to infer implicit information (classification, satisfiability and realization) of OWL ontology, a number of OWL reasoners have been introduced. Ontology classification is to compute a partial ordering or hierarchy of named concepts in the ontology using the subsumption testing. Most of the reasoners use both top-down and bottom-up searches using subsumption testing for ontology classification. As subsumption testing is costly, it is important to ensure that the classification process uses the smallest number of tests. In this paper, we propose an enhanced method of optimizing the ontology classification process of ontology reasoning. Our work focuses on two key aspects: The first and foremost, we describe classical methods for ontology classification. Next, we present description of the enhanced method of optimizing the ontology classification and the detailed algorithm. We evaluate the effect of the enhanced method on four different types of test ontology. The enhanced search method shows 30% performance improvement as compared with the classical method according to the result of the experiment

    Defeasible Reasoning in SROEL: from Rational Entailment to Rational Closure

    Full text link
    In this work we study a rational extension SROELRTSROEL^R T of the low complexity description logic SROEL, which underlies the OWL EL ontology language. The extension involves a typicality operator T, whose semantics is based on Lehmann and Magidor's ranked models and allows for the definition of defeasible inclusions. We consider both rational entailment and minimal entailment. We show that deciding instance checking under minimal entailment is in general Π2P\Pi^P_2-hard, while, under rational entailment, instance checking can be computed in polynomial time. We develop a Datalog calculus for instance checking under rational entailment and exploit it, with stratified negation, for computing the rational closure of simple KBs in polynomial time.Comment: Accepted for publication on Fundamenta Informatica

    Optimizing Description Logic Reasoning for the Service Matchmaking and Composition

    Get PDF
    The Semantic Web is a recent initiative to expose semantically rich information associated with Web resources to build more intelligent Web-based systems. Recently, several projects have embraced this vision and there are several successful applications that combine the strengths of the Web and of semantic technologies. However, Semantic Web still lacks a technology, which would provide the needed scalability and integration with existing infrastructure. In this paper we present our ongoing work on a Semantic Web repository, which is capable of addressing complex schemas and answer queries over ontologies with large number of instances. We present the details of our approach and describe the underlying architecture of the system. We conclude with a performance evaluation, which compares the current state-of-the-art reasoners with our system

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Engineering optimisations in query rewriting for OBDA

    Full text link
    Ontology-based data access (OBDA) systems use ontologies to provide views over relational databases. Most of these systems work with ontologies implemented in description logic families of reduced expressiveness, what allows applying efficient query rewriting techniques for query answering. In this paper we describe a set of optimisations that are applicable with one of the most expressive families used in this context (ELHIO¬). Our resulting system exhibits a behaviour that is comparable to the one shown by systems that handle less expressive logics

    A Machine Learning Approach for Optimizing Heuristic Decision-making in OWL Reasoners

    Get PDF
    Description Logics (DLs) are formalisms for representing knowledge bases of application domains. TheWeb Ontology Language (OWL) is a syntactic variant of a very expressive description logic. OWL reasoners can infer implied information from OWL ontologies. The performance of OWL reasoners can be severely affected by situations that require decision-making over many alternatives. Such a non-deterministic behavior is often controlled by heuristics that are based on insufficient information. This thesis proposes a novel OWL reasoning approach that applies machine learning (ML) to implement pragmatic and optimal decision-making strategies in such situations. Disjunctions occurring in ontologies are one source of non deterministic actions in reasoners. We propose two ML-based approaches to reduce the non-determinism caused by dealing with disjunctions. The first approach is restricted to propositional description logic while the second one can deal with standard description logic. The first approach builds a logistic regression classifier that chooses a proper branching heuristic for an input ontology. Branching heuristics are first developed to help Propositional Satisfiability (SAT) based solvers with making decisions about which branch to pick in each branching level. The second approach is the developed version of the first approach. An SVM (Support Vector Machine) classier is designed to select an appropriate expansion-ordering heuristic for an input ontology. The built-in heuristics are designed for expansion ordering of satisfiability testing in OWL reasoners. They determine the order for branches in search trees. Both of the above approaches speed up our ML-based reasoner by up to two orders of magnitude in comparison to the non-ML reasoner. Another source of non-deterministic actions is the order in which tableau rules should be applied. On average, our ML-based approach that is an SVM classifier achieves a speedup of two orders of magnitude when compared to the most expensive rule ordering of the non-ML reasoner
    corecore