680 research outputs found

    InTune: Reinforcement Learning-based Data Pipeline Optimization for Deep Recommendation Models

    Full text link
    Deep learning-based recommender models (DLRMs) have become an essential component of many modern recommender systems. Several companies are now building large compute clusters reserved only for DLRM training, driving new interest in cost- and time- saving optimizations. The systems challenges faced in this setting are unique; while typical deep learning training jobs are dominated by model execution, the most important factor in DLRM training performance is often online data ingestion. In this paper, we explore the unique characteristics of this data ingestion problem and provide insights into DLRM training pipeline bottlenecks and challenges. We study real-world DLRM data processing pipelines taken from our compute cluster at Netflix to observe the performance impacts of online ingestion and to identify shortfalls in existing pipeline optimizers. We find that current tooling either yields sub-optimal performance, frequent crashes, or else requires impractical cluster re-organization to adopt. Our studies lead us to design and build a new solution for data pipeline optimization, InTune. InTune employs a reinforcement learning (RL) agent to learn how to distribute the CPU resources of a trainer machine across a DLRM data pipeline to more effectively parallelize data loading and improve throughput. Our experiments show that InTune can build an optimized data pipeline configuration within only a few minutes, and can easily be integrated into existing training workflows. By exploiting the responsiveness and adaptability of RL, InTune achieves higher online data ingestion rates than existing optimizers, thus reducing idle times in model execution and increasing efficiency. We apply InTune to our real-world cluster, and find that it increases data ingestion throughput by as much as 2.29X versus state-of-the-art data pipeline optimizers while also improving both CPU & GPU utilization.Comment: Accepted at RecSys 2023. 11 pages, 2 pages of references. 8 figures with 2 table

    Exploring Deep Space: Learning Personalized Ranking in a Semantic Space

    Full text link
    Recommender systems leverage both content and user interactions to generate recommendations that fit users' preferences. The recent surge of interest in deep learning presents new opportunities for exploiting these two sources of information. To recommend items we propose to first learn a user-independent high-dimensional semantic space in which items are positioned according to their substitutability, and then learn a user-specific transformation function to transform this space into a ranking according to the user's past preferences. An advantage of the proposed architecture is that it can be used to effectively recommend items using either content that describes the items or user-item ratings. We show that this approach significantly outperforms state-of-the-art recommender systems on the MovieLens 1M dataset.Comment: 6 pages, RecSys 2016 RSDL worksho

    A novel evaluation framework for recommender systems in big data environments

    Get PDF
    Henriques, R., & Pinto, L. (2023). A novel evaluation framework for recommender systems in big data environments. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2023.120659---We gratefully acknowledge the support of Aptoide in providing access to the data which made this project possible. This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia), under the project—UIDB/04152/2020—Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS.Recommender systems were first introduced to solve information overload problems in enterprises. Over the last few decades, recommender systems have found applications in several major websites related to e-commerce, music and video streaming, travel and movie sites, social media, and mobile app stores. Several methods have been proposed over the years to build recommender systems. However, very little work has been done in recommender system evaluation metrics. The most common approach to measuring recommender system’s performance in offline settings is to employ micro or macro averaged versions of standard machine-learning measures. Profit or other business-oriented metrics have been proposed for other predictive analytics problems, such as churn prediction. However, no such metrics have emerged for the recommender system context. In this work, we propose a novel evaluation metric that incorporates information from the online-platform userbase’s behavior. This metric’s rationale is that the recommender system ought to improve customers’ repeatead use of an online platform beyond the baseline level (i.e. in the absence of a recommender system). An empirical application of this novel metric is also presented in a real-world mobile app store, which integrates the dynamics of large-scale big data environments, which are common deployment scenarios for these types of recommender systems. The resulting profit metric is shown to correlate with the existing metrics while also being capable of integrating cost information, thereby providing an additional business benefit context, which allows us to differentiate between two similarly performing models.publishersversionepub_ahead_of_prin
    • …
    corecore