102 research outputs found

    Traffic Sensitive and Traffic Load Aware Path Selection Algorithm For MMR WIMAX Networks

    Get PDF
    The recent developments in the broadband wireless access (BWA) communication systems have introduced several major changes to the existing systems. Legacy IEEE 802.16j is one such amendment to the existing IEEE 802.16 WiMAX family. The key modification introduced by 802.16j system is the concept of relay station (RS), which may be used to enhance the system coverage or to make system throughput optimal. The end terminals, subscriber stations (SS) are unchanged in the standard. The overall change pertinent to the system has raised many unresolved issues related to RS and multi-hop relay base station (MR-BS). The selection of path from a SS to MR-BS via a RS is also one of the issues, need to be addressed. The path selection of a SS in both uplink and downlink directions is left open in the standard. It is very significant to satisfy the traffics of stringent quality of service (QoS) requirements and to appropriately manage the resources of a cell under different circumstances. This paper proposes a path selection algorithm to achieve the aforementioned qualities in the network. The path selection metrics include traffic load of the transparent relay station and traffic sensitivity factor of the SS. An extensive simulation work discusses the performance evaluation of the proposed work using QualNet simulator

    Relay Technologies in IEEE 802.16j Mobile Multi-hop Relay (MMR) Networks

    Get PDF
    IEEE 802.16 standard is created to compete with cable access networks. In the beginning end users are immobile and have a line of sight with base station, now it moved to mobile non line of sight (NLOS) with the new standard IEEE 802.16e and IEEE 802.16j. The new IEEE 802.16j standard which is an amendment to IEEE 802.16e is mobile multi hop relay (MMR) specification for wireless networks. This paper discusses relay modes, relay transmission schemes and relay pairing schemes of IEEE 802.16j. Relay technologies such as transparent relay modes, non transparent relay mode, relay pairing schemes such as centralized relay pairing schemes, distributed relay pairing scheme, characterises of relay based networks such as throughput enhancement, capacity increase, cost reduction , relay techniques such as time domain frequency domain relay techniques and relay placement are also discussed in this paper. The paper also discusses about integration of IEEE 802.16j with IEEE 802.11. Keywords: IEEE 802.16j, Relay pairing schemes, relay techniques, Relay modes, WIMAX, NCTUns, et

    Qualitative Investigation of the Performance of Real-Time Application of IEEE 802.16e standard WiMAX Relay Networks

    Get PDF
    The ability of an application to adapt its behavior to changing network conditions depends on the available bandwidth, throughput, delay and packet loss in a network path. These are of major importance in congestion control, streaming applications, quality of service verification, relay selection and many other areas in WiMAX relay stations. Mobile WiMAX, which is based on the IEEE 802.16e standard, provides support for and enables full mobility to users. In an effort to optimize and enhance the overall network throughput, this paper will propose a mobile relay framework. WiMAX is based on the IEEE 802.16e standard, and can support various types of handovers, while allowing for full mobility from the user endpoint. Different methodologies were used to compare different aspects of WiMAX relay stations including throughput, delay, SNR and network load. OPNET modular was used to develop and measure these set of network performance metrics. To accurately measure and evaluate the aforementioned network parameters we employed techniques that were able to process large amounts of data, this aided in provision of much more informed recommendations as to the type of relay station modes that should be installed engender enhanced, improved and optimal Quality of Service (QoS) within the network perimeter. This paper measured the overall network throughput, delay, SNR and network load of relay networks comprising mainly of multimedia applications. Keywords: WiMAX, QoS, Relay Station, Simulation, Topology, Throughput, Delay, Packet Los

    Bandwidth Allocation Based on Traffic Load and Interference in IEEE 802.16 Mesh Networks

    Get PDF

    Radio resource allocation in relay based OFDMA cellular networks

    Get PDF
    PhDAdding relay stations (RS) between the base station (BS) and the mobile stations (MS) in a cellular system can extend network coverage, overcome multi-path fading and increase the capacity of the system. This thesis considers the radio resource allocation scheme in relay based cellular networks to ensure high-speed and reliable communication. The goal of this research is to investigate user fairness, system throughput and power consumption in wireless relay networks through considering how best to manage the radio resource. This thesis proposes a two-hop proportional fairness (THPF) scheduling scheme fair allocation, which is considered both in the first time subslot between direct link users and relay stations, and the second time subslot among relay link users. A load based relay selection algorithm is also proposed for a fair resource allocation. The transmission mode (direct transmission mode or relay transmission mode) of each user will be adjusted based on the load of the transmission node. Power allocation is very important for resource efficiency and system performance improvement and this thesis proposes a two-hop power allocation algorithm for energy efficiency, which adjusts the transmission power of the BS and RSs to make the data rate on the two hop links of one RS match each other. The power allocation problem of multiple cells with inter-cell interference is studied. A new multi-cell power allocation scheme is proposed from non-cooperative game theory; this coordinates the inter-cell interference and operates in a distributed manner. The utility function can be designed for throughput improvement and user fairness respectively. Finally, the proposed algorithms in this thesis are combined, and the system performance is evaluated. The joint radio resource allocation algorithm can achieve a very good tradeoff between throughput and user fairness, and also can significantly improve energy efficiency

    Joint relay selection and bandwidth allocation for cooperative relay network

    Get PDF
    Cooperative communication that exploits multiple relay links offers significant performance improvement in terms of coverage and capacity for mobile data subscribers in hierarchical cellular network. Since cooperative communication utilizes multiple relay links, complexity of the network is increased due to the needs for efficient resource allocation. Besides, usage of multiple relay links leads to Inter- Cell Interference (ICI). The main objective of this thesis is to develop efficient resource allocation scheme minimizes the effect of ICI in cooperative relay network. The work proposed a joint relay selection and bandwidth allocation in cooperative relay network that ensures high achievable data rate with high user satisfaction and low outage percentage. Two types of network models are considered: single cell network and multicell network. Joint Relay Selection and Bandwidth Allocation with Spatial Reuse (JReSBA_SR) and Optimized JReSBA_SR (O_JReSBA_SR) are developed for single cell network. JReSBA_SR considers link quality and user demand for resource allocation, and is equipped with spatial reuse to support higher network load. O_JReSBA_SR is an enhancement of JReSBA_SR with decision strategy based on Markov optimization. In multicell network, JReSBA with Interference Mitigation (JReSBA_IM) and Optimized JReSBA_IM (O_JReSBA_IM) are developed. JReSBA_IM deploys sectored-Fractional Frequency Reuse (sectored- FFR) partitioning concept in order to minimize the effect of ICI between adjacent cells. The performance is evaluated in terms of cell achievable rate, Outage Percentage (OP) and Satisfaction Index (SI). The result for single cell network shows that JReSBA_SR has notably improved the cell achievable rate by 35.0%, with reduced OP by 17.7% compared to non-joint scheme at the expense of slight increase in complexity at Relay Node (RN). O_JReSBA_SR has further improved the cell achievable rate by 13.9% while maintaining the outage performance with reduced complexity compared to JReSBA_SR due to the effect of optimization. The result for multicell network shows that JReSBA_IM enhances the cell achievable rate up to 65.1% and reduces OP by 35.0% as compared to benchmark scheme. Similarly, O_JReSBA_IM has significantly reduced the RN complexity of JReSBA_IM scheme, improved the cell achievable rate up to 9.3% and reduced OP by 1.3%. The proposed joint resource allocation has significantly enhanced the network performance through spatial frequency reuse, efficient, fair and optimized resource allocation. The proposed resource allocation is adaptable to variation of network load and can be used in any multihop cellular network such as Long Term Evolution-Advanced (LTE-A) network
    • …
    corecore