65,221 research outputs found
Data-Driven Shape Analysis and Processing
Data-driven methods play an increasingly important role in discovering
geometric, structural, and semantic relationships between 3D shapes in
collections, and applying this analysis to support intelligent modeling,
editing, and visualization of geometric data. In contrast to traditional
approaches, a key feature of data-driven approaches is that they aggregate
information from a collection of shapes to improve the analysis and processing
of individual shapes. In addition, they are able to learn models that reason
about properties and relationships of shapes without relying on hard-coded
rules or explicitly programmed instructions. We provide an overview of the main
concepts and components of these techniques, and discuss their application to
shape classification, segmentation, matching, reconstruction, modeling and
exploration, as well as scene analysis and synthesis, through reviewing the
literature and relating the existing works with both qualitative and numerical
comparisons. We conclude our report with ideas that can inspire future research
in data-driven shape analysis and processing.Comment: 10 pages, 19 figure
Transport-Based Neural Style Transfer for Smoke Simulations
Artistically controlling fluids has always been a challenging task.
Optimization techniques rely on approximating simulation states towards target
velocity or density field configurations, which are often handcrafted by
artists to indirectly control smoke dynamics. Patch synthesis techniques
transfer image textures or simulation features to a target flow field. However,
these are either limited to adding structural patterns or augmenting coarse
flows with turbulent structures, and hence cannot capture the full spectrum of
different styles and semantically complex structures. In this paper, we propose
the first Transport-based Neural Style Transfer (TNST) algorithm for volumetric
smoke data. Our method is able to transfer features from natural images to
smoke simulations, enabling general content-aware manipulations ranging from
simple patterns to intricate motifs. The proposed algorithm is physically
inspired, since it computes the density transport from a source input smoke to
a desired target configuration. Our transport-based approach allows direct
control over the divergence of the stylization velocity field by optimizing
incompressible and irrotational potentials that transport smoke towards
stylization. Temporal consistency is ensured by transporting and aligning
subsequent stylized velocities, and 3D reconstructions are computed by
seamlessly merging stylizations from different camera viewpoints.Comment: ACM Transaction on Graphics (SIGGRAPH ASIA 2019), additional
materials: http://www.byungsoo.me/project/neural-flow-styl
- …
