339 research outputs found

    Adaptive Delivery in Caching Networks

    Full text link
    The problem of content delivery in caching networks is investigated for scenarios where multiple users request identical files. Redundant user demands are likely when the file popularity distribution is highly non-uniform or the user demands are positively correlated. An adaptive method is proposed for the delivery of redundant demands in caching networks. Based on the redundancy pattern in the current demand vector, the proposed method decides between the transmission of uncoded messages or the coded messages of [1] for delivery. Moreover, a lower bound on the delivery rate of redundant requests is derived based on a cutset bound argument. The performance of the adaptive method is investigated through numerical examples of the delivery rate of several specific demand vectors as well as the average delivery rate of a caching network with correlated requests. The adaptive method is shown to considerably reduce the gap between the non-adaptive delivery rate and the lower bound. In some specific cases, using the adaptive method, this gap shrinks by almost 50% for the average rate.Comment: 8 pages,8 figures. Submitted to IEEE transaction on Communications in 2015. A short version of this article was published as an IEEE Communications Letter with DOI: 10.1109/LCOMM.2016.255814

    Updating Content in Cache-Aided Coded Multicast

    Full text link
    Motivated by applications to delivery of dynamically updated, but correlated data in settings such as content distribution networks, and distributed file sharing systems, we study a single source multiple destination network coded multicast problem in a cache-aided network. We focus on models where the caches are primarily located near the destinations, and where the source has no cache. The source observes a sequence of correlated frames, and is expected to do frame-by-frame encoding with no access to prior frames. We present a novel scheme that shows how the caches can be advantageously used to decrease the overall cost of multicast, even though the source encodes without access to past data. Our cache design and update scheme works with any choice of network code designed for a corresponding cache-less network, is largely decentralized, and works for an arbitrary network. We study a convex relation of the optimization problem that results form the overall cost function. The results of the optimization problem determines the rate allocation and caching strategies. Numerous simulation results are presented to substantiate the theory developed.Comment: To Appear in IEEE Journal on Selected Areas in Communications: Special Issue on Caching for Communication Systems and Network

    Caching and Coded Multicasting: Multiple Groupcast Index Coding

    Full text link
    The capacity of caching networks has received considerable attention in the past few years. A particularly studied setting is the case of a single server (e.g., a base station) and multiple users, each of which caches segments of files in a finite library. Each user requests one (whole) file in the library and the server sends a common coded multicast message to satisfy all users at once. The problem consists of finding the smallest possible codeword length to satisfy such requests. In this paper we consider the generalization to the case where each user places L≥1L \geq 1 requests. The obvious naive scheme consists of applying LL times the order-optimal scheme for a single request, obtaining a linear in LL scaling of the multicast codeword length. We propose a new achievable scheme based on multiple groupcast index coding that achieves a significant gain over the naive scheme. Furthermore, through an information theoretic converse we find that the proposed scheme is approximately optimal within a constant factor of (at most) 1818.Comment: 5 pages, 1 figure, to appear in GlobalSIP14, Dec. 201
    • …
    corecore