2,403 research outputs found

    Evidence against a mean field description of short-range spin glasses revealed through thermal boundary conditions

    Get PDF
    A theoretical description of the low-temperature phase of short-range spin glasses has remained elusive for decades. In particular, it is unclear if theories that assert a single pair of pure states, or theories that are based infinitely many pure states-such as replica symmetry breaking-best describe realistic short-range systems. To resolve this controversy, the three-dimensional Edwards-Anderson Ising spin glass in thermal boundary conditions is studied numerically using population annealing Monte Carlo. In thermal boundary conditions all eight combinations of periodic vs antiperiodic boundary conditions in the three spatial directions appear in the ensemble with their respective Boltzmann weights, thus minimizing finite-size corrections due to domain walls. From the relative weighting of the eight boundary conditions for each disorder instance a sample stiffness is defined, and its typical value is shown to grow with system size according to a stiffness exponent. An extrapolation to the large-system-size limit is in agreement with a description that supports the droplet picture and other theories that assert a single pair of pure states. The results are, however, incompatible with the mean-field replica symmetry breaking picture, thus highlighting the need to go beyond mean-field descriptions to accurately describe short-range spin-glass systems.Comment: 13 pages, 11 figures, 3 table

    Population annealing: Theory and application in spin glasses

    Get PDF
    Population annealing is an efficient sequential Monte Carlo algorithm for simulating equilibrium states of systems with rough free energy landscapes. The theory of population annealing is presented, and systematic and statistical errors are discussed. The behavior of the algorithm is studied in the context of large-scale simulations of the three-dimensional Ising spin glass and the performance of the algorithm is compared to parallel tempering. It is found that the two algorithms are similar in efficiency though with different strengths and weaknesses.Comment: 16 pages, 10 figures, 4 table

    Accelerated Stochastic Sampling of Discrete Statistical Systems

    Full text link
    We propose a method to reduce the relaxation time towards equilibrium in stochastic sampling of complex energy landscapes in statistical systems with discrete degrees of freedom by generalizing the platform previously developed for continuous systems. The method starts from a master equation, in contrast to the Fokker-Planck equation for the continuous case. The master equation is transformed into an imaginary-time Schr\"odinger equation. The Hamiltonian of the Schr\"odinger equation is modified by adding a projector to its known ground state. We show how this transformation decreases the relaxation time and propose a way to use it to accelerate simulated annealing for optimization problems. We implement our method in a simplified kinetic Monte Carlo scheme and show an acceleration by an order of magnitude in simulated annealing of the symmetric traveling salesman problem. Comparisons of simulated annealing are made with the exchange Monte Carlo algorithm for the three-dimensional Ising spin glass. Our implementation can be seen as a step toward accelerating the stochastic sampling of generic systems with complex landscapes and long equilibration times.Comment: 18 pages, 6 figures, to appear in Phys. Rev.

    Numerical simulations of Ising spin glasses with free boundary conditions: the role of droplet excitations and domain walls

    Get PDF
    The relative importance of the contributions of droplet excitations and domain walls on the ordering of short-range Edwards-Anderson spin glasses in three and four dimensions is studied. We compare the overlap distributions of periodic and free boundary conditions using population annealing Monte Carlo. For system sizes up to about 1000 spins, spin glasses show non-trivial spin overlap distributions. Periodic boundary conditions can trap diffusive domain walls which can contribute to small spin overlaps, and the other contribution is the existence of low-energy droplet excitations within the system. We use free boundary conditions to minimize domain-wall effects, and show that low-energy droplet excitations are the major contribution to small overlaps in numerical simulations. Free boundary conditions has stronger finite-size effects, and is likely to have the same thermodynamic limit with periodic boundary conditions.Comment: 5 pages, 4 figure
    • …
    corecore