341 research outputs found

    Channel assembling and resource allocation in multichannel spectrum sharing wireless networks

    Get PDF
    Submitted in fulfilment of the academic requirements for the degree of Doctor of Philosophy (Ph.D.) in Engineering, in the School of Electrical and Information Engineering, Faculty of Engineering and the Built Environment, at the University of the Witwatersrand, Johannesburg, South Africa, 2017The continuous evolution of wireless communications technologies has increasingly imposed a burden on the use of radio spectrum. Due to the proliferation of new wireless networks applications and services, the radio spectrum is getting saturated and becoming a limited resource. To a large extent, spectrum scarcity may be a result of deficient spectrum allocation and management policies, rather than of the physical shortage of radio frequencies. The conventional static spectrum allocation has been found to be ineffective, leading to overcrowding and inefficient use. Cognitive radio (CR) has therefore emerged as an enabling technology that facilitates dynamic spectrum access (DSA), with a great potential to address the issue of spectrum scarcity and inefficient use. However, provisioning of reliable and robust communication with seamless operation in cognitive radio networks (CRNs) is a challenging task. The underlying challenges include development of non-intrusive dynamic resource allocation (DRA) and optimization techniques. The main focus of this thesis is development of adaptive channel assembling (ChA) and DRA schemes, with the aim to maximize performance of secondary user (SU) nodes in CRNs, without degrading performance of primary user (PU) nodes in a primary network (PN). The key objectives are therefore four-fold. Firstly, to optimize ChA and DRA schemes in overlay CRNs. Secondly, to develop analytical models for quantifying performance of ChA schemes over fading channels in overlay CRNs. Thirdly, to extend the overlay ChA schemes into hybrid overlay and underlay architectures, subject to power control and interference mitigation; and finally, to extend the adaptive ChA and DRA schemes for multiuser multichannel access CRNs. Performance analysis and evaluation of the developed ChA and DRA is presented, mainly through extensive simulations and analytical models. Further, the cross validation has been performed between simulations and analytical results to confirm the accuracy and preciseness of the novel analytical models developed in this thesis. In general, the presented results demonstrate improved performance of SU nodes in terms of capacity, collision probability, outage probability and forced termination probability when employing the adaptive ChA and DRA in CRNs.CK201

    Ieee access special section editorial: Cloud and big data-based next-generation cognitive radio networks

    Get PDF
    In cognitive radio networks (CRN), secondary users (SUs) are required to detect the presence of the licensed users, known as primary users (PUs), and to find spectrum holes for opportunistic spectrum access without causing harmful interference to PUs. However, due to complicated data processing, non-real-Time information exchange and limited memory, SUs often suffer from imperfect sensing and unreliable spectrum access. Cloud computing can solve this problem by allowing the data to be stored and processed in a shared environment. Furthermore, the information from a massive number of SUs allows for more comprehensive information exchanges to assist the

    Robust Sum MSE Optimization for Downlink Multiuser MIMO Systems with Arbitrary Power Constraint: Generalized Duality Approach

    Full text link
    This paper considers linear minimum meansquare- error (MMSE) transceiver design problems for downlink multiuser multiple-input multiple-output (MIMO) systems where imperfect channel state information is available at the base station (BS) and mobile stations (MSs). We examine robust sum mean-square-error (MSE) minimization problems. The problems are examined for the generalized scenario where the power constraint is per BS, per BS antenna, per user or per symbol, and the noise vector of each MS is a zero-mean circularly symmetric complex Gaussian random variable with arbitrary covariance matrix. For each of these problems, we propose a novel duality based iterative solution. Each of these problems is solved as follows. First, we establish a novel sum average meansquare- error (AMSE) duality. Second, we formulate the power allocation part of the problem in the downlink channel as a Geometric Program (GP). Third, using the duality result and the solution of GP, we utilize alternating optimization technique to solve the original downlink problem. To solve robust sum MSE minimization constrained with per BS antenna and per BS power problems, we have established novel downlink-uplink duality. On the other hand, to solve robust sum MSE minimization constrained with per user and per symbol power problems, we have established novel downlink-interference duality. For the total BS power constrained robust sum MSE minimization problem, the current duality is established by modifying the constraint function of the dual uplink channel problem. And, for the robust sum MSE minimization with per BS antenna and per user (symbol) power constraint problems, our duality are established by formulating the noise covariance matrices of the uplink and interference channels as fixed point functions, respectively.Comment: IEEE TSP Journa
    corecore