2 research outputs found

    Optimization of Multiple-Rendezvous Low-Thrust Missions on General-Purpose Graphics Processing Units

    Get PDF
    A massively parallel method for the identification of optimal sequences of targets in multiple-rendezvous low-thrust missions is presented. Given a list of possible targets, a global search of sequences compatible with the mission requirements is performed. To estimate the feasibility of each transfer, a heuristic model based on Lambert's transfers is evaluated in parallel for each target, making use of commonly available general-purpose graphics processing units such as the Nvidia Tesla cards. The resulting sequences are ranked by user-specified criteria such as length or fuel consumption. The resulting preliminary sequences are then optimized to a full low-thrust trajectory using classical methods for each leg. The performance of the method is discussed as a function of various parameters of the algorithm. The efficiency of the general-purpose graphics processing unit implementation is demonstrated by comparing it with a traditional CPU-based branch-and-bound method. Finally, the algorithm is used to compute asteroid sequences used in a solution submitted to the seventh edition of the Global Trajectory Optimization Competition

    Nonlinear Uncertainty Propagation in Astrodynamics Using Differential Algebra and Graphics Processing Units

    Get PDF
    In this paper, two numerical methods for nonlinear uncertainty propagation in astrodynamics are presented and thoroughly compared. Both methods are based on the Monte Carlo idea of evaluating multiple samples of an initial statistical distribution around the nominal state. However, whereas the graphics processing unit implementation aims at increasing the performances of the classical Monte Carlo approach exploiting the massively parallel architecture of modern general-purpose computing on graphics processing units, the method based on differential algebra is aimed at the improvement and generalization of standard linear methods for uncertainty propagation. The two proposed numerical methods are applied to test cases considering both simple two-body dynamics and a full n-body dynamics with accurate ephemeris. The results of the propagation are thoroughly compared with particular emphasis on both accuracy and computational performances
    corecore