180 research outputs found

    Design, analysis and optimization of visible light communications based indoor access systems for mobile and internet of things applications

    Get PDF
    Demands for indoor broadband wireless access services are expected to outstrip the spectrum capacity in the near-term spectrum crunch . Deploying additional femtocells to address spectrum crunch is cost-inefficient due to the backhaul challenge and the exorbitant system maintenance. According to an Alcatel-Lucent report, most mobile Internet access traffic happens indoors. To alleviate the spectrum crunch and the backhaul challenge problems, visible light communication (VLC) emerges as an attractive candidate for indoor wireless access in the 5G architecture. In particular, VLC utilizes LED or fluorescent lamps to send out imperceptible flickering light that can be captured by a smart phone camera or photodetector. Leveraging power line communication and the available indoor infrastructure, VLC can be utilized with a small one-time cost. VLC also facilitates the great advantage of being able to jointly perform illumination and communications. Integration of VLC into the existing indoor wireless access networks embraces many challenges, such as lack of uplink infrastructure, excessive delay caused by blockage in heterogeneous networks, and overhead of power consumption. In addition, applying VLC to Internet-of-Things (IoT) applications, such as communication and localization, faces the challenges including ultra-low power requirement, limited modulation bandwidth, and heavy computation and sensing at the device end. In this dissertation, to overcome the challenges of VLC, a VLC enhanced WiFi system is designed by incorporating VLC downlink and WiFi uplink to connect mobile devices to the Internet. To further enhance robustness and throughput, WiFi and VLC are aggregated in parallel by leveraging the bonding technique in Linux operating system. Based on dynamic resource allocation, the delay performance of heterogeneous RF-VLC network is analyzed and evaluated for two different configurations - aggregation and non-aggregation. To mitigate the power consumption overhead of VLC, a problem of minimizing the total power consumption of a general multi-user VLC indoor network while satisfying users traffic demands and maintaining an acceptable level of illumination is formulated. The optimization problem is solved by the efficient column generation algorithm. With ultra-low power consumption, VLC backscatter harvests energy from indoor light sources and transmits optical signals by modulating the reflected light from a reflector. A novel pixelated VLC backscatter is proposed and prototyped to address the limited modulation bandwidth by enabling more advanced modulation scheme than the state-of-the-art on-off keying (OOK) scheme and allowing for the first time orthogonal multiple access. VLC-based indoor access system is also suitable for indoor localization due to its unique properties, such as utilization of existing ubiquitous lighting infrastructure, high location and orientation accuracy, and no interruption to RF-based devices. A novel retroreflector-based visible light localization system is proposed and prototyped to establish an almost zero-delay backward channel using a retroreflector to reflect light back to its source. This system can localize passive IoT devices without requiring computation and heavy sensing (e.g., camera) at the device end

    Machine learning-based decentralized TDMA for VLC IoT networks

    Full text link
    In this paper, a machine learning-based decentralized time division multiple access (TDMA) algorithm for visible light communication (VLC) Internet of Things (IoT) networks is proposed. The proposed algorithm is based on Q-learning, a reinforcement learning algorithm. This paper considers a decentralized condition in which there is no coordinator node for sending synchronization frames and assigning transmission time slots to other nodes. The proposed algorithm uses a decentralized manner for synchronization, and each node uses the Q-learning algorithm to find the optimal transmission time slot for sending data without collisions. The proposed algorithm is implemented on a VLC hardware system, which had been designed and implemented in our laboratory. Average reward, convergence time, goodput, average delay, and data packet size are evaluated parameters. The results show that the proposed algorithm converges quickly and provides collision-free decentralized TDMA for the network. The proposed algorithm is compared with carrier-sense multiple access with collision avoidance (CSMA/CA) algorithm as a potential selection for decentralized VLC IoT networks. The results show that the proposed algorithm provides up to 61% more goodput and up to 49% less average delay than CSMA/CA.Comment: This work has been submitted to a journal for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    An Intelligent Management System for Hybrid Network between Visible Light Communication and Radio Frequency

    Get PDF
    This thesis investigates the challenges and potential solutions associated with hybrid Visible Light Communication (VLC) and Radio Frequency (RF) systems for indoor network environments. The rapid development of VLC technology, characterized by its high data rates, energy efficiency, and inherent security features, offers promising opportunities to complement RF networks in providing seamless connectivity and improved performance. However, integrating VLC and RF technologies effectively requires addressing a range of research and engineering challenges, including network coexistence, handover mechanisms, resource allocation, localization, and standardization.We begin by conducting a comprehensive literature review encompassing existing research, technologies, and solutions related to hybrid VLC/RF architectures, handover management, indoor localization techniques, and the challenges faced by these systems. This background provides a solid foundation for understanding the current state-of-the-art and identifying research gaps in the field of hybrid VLC/RF networks.Next, we propose a novel hybrid network architecture that integrates VLC and RF communication systems to enhance their strengths while mitigating their weaknesses. We discuss various types of hybrid VLC/RF architectures found in the literature and present our proposed design, which addresses the identified challenges through innovative strategies and mechanisms.To improve system performance in our hybrid system, we develop an enhanced priority feedback channel that optimizes the traffic priority based on user preferences and network conditions. This approach minimizes service disruptions, reduces latency, and maintains user Quality of Experience (QoE)\nomenclature{QoE}{Quality of Experience}.Furthermore, we introduce a novel intelligent management system architecture tailored for hybrid VLC/RF networks. This system employs advanced algorithms and techniques to optimize resource allocation, load balancing, localization, and handover management, ensuring efficient operation and seamless connectivity.We evaluate the performance of our proposed solutions through extensive simulations and testbed experiments, considering different network scenarios and metrics. The results demonstrate significant improvements in terms of data rate, latency, handover success rate, and localization accuracy, validating the effectiveness of our proposed architecture and management system.Lastly, we explore several real-world applications and case studies of our intelligent management system in various indoor environments, such as retail stores, offices, and hospitals. These examples illustrate the practical benefits of our solution in enhancing customer experiences, optimizing operational efficiency, facilitating targeted marketing, and improving energy management.In conclusion, this thesis contributes to the advancement of hybrid VLC/RF networks by proposing an innovative architecture and intelligent management system that address the key challenges faced by these systems in indoor environments. The findings and solutions presented in this work provided the backbone for the future research and development efforts aimed at fully harnessing the potential of VLC technology in combination with RF networks

    Joint Optimization of Illumination and Communication for a Multi-Element VLC Architecture

    Get PDF
    Because of the ever increasing demand wireless data in the modern era, the Radio Frequency (RF) spectrum is becoming more congested. The remaining RF spectrum is being shrunk at a very heavy rate, and spectral management is becoming more difficult. Mobile data is estimated to grow more than 10 times between 2013 and 2019, and due to this explosion in data usage, mobile operators are having serious concerns focusing on public Wireless Fidelity (Wi-Fi) and other alternative technologies. Visible Light Communication (VLC) is a recent promising technology complementary to RF spectrum which operates at the visible light spectrum band (roughly 400 THz to 780 THz) and it has 10,000 times bigger size than radio waves (roughly 3 kHz to 300 GHz). Due to this tremendous potential, VLC has captured a lot of interest recently as there is already an extensive deployment of energy efficient Light Emitting Diodes (LEDs). The advancements in LED technology with fast nanosecond switching times is also very encouraging. In this work, we present hybrid RF/VLC architecture which is capable of providing simultaneous lighting and communication coverage in an indoor setting. The architecture consists of a multi-element hemispherical bulb design, where it is possible to transmit multiple data streams from the multi-element hemispherical bulb using LED modules. We present the detailed components of the architecture and make simulations considering various VLC transmitter configurations. Also, we devise an approach for an efficient bulb design mechanism to maintain both illumination and communication at a satisfactory rate, and analyze it in the case of two users in a room. The approach involves formulating an optimization problem and tackling the problem using a simple partitioning algorithm. The results indicate that good link quality and high spatial reuse can be maintained in a typical indoor communication setting

    Software-Defined Lighting.

    Full text link
    For much of the past century, indoor lighting has been based on incandescent or gas-discharge technology. But, with LED lighting experiencing a 20x/decade increase in flux density, 10x/decade decrease in cost, and linear improvements in luminous efficiency, solid-state lighting is finally cost-competitive with the status quo. As a result, LED lighting is projected to reach over 70% market penetration by 2030. This dissertation claims that solid-state lighting’s real potential has been barely explored, that now is the time to explore it, and that new lighting platforms and applications can drive lighting far beyond its roots as an illumination technology. Scaling laws make solid-state lighting competitive with conventional lighting, but two key features make solid-state lighting an enabler for many new applications: the high switching speeds possible using LEDs and the color palettes realizable with Red-Green-Blue-White (RGBW) multi-chip assemblies. For this dissertation, we have explored the post-illumination potential of LED lighting in applications as diverse as visible light communications, indoor positioning, smart dust time synchronization, and embedded device configuration, with an eventual eye toward supporting all of them using a shared lighting infrastructure under a unified system architecture that provides software-control over lighting. To explore the space of software-defined lighting (SDL), we design a compact, flexible, and networked SDL platform to allow researchers to rapidly test new ideas. Using this platform, we demonstrate the viability of several applications, including multi-luminaire synchronized communication to a photodiode receiver, communication to mobile phone cameras, and indoor positioning using unmodified mobile phones. We show that all these applications and many other potential applications can be simultaneously supported by a single lighting infrastructure under software control.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111482/1/samkuo_1.pd
    • …
    corecore