121 research outputs found

    Practical LDPC coded modulation schemes for the fading broadcast channel with confidential messages

    Full text link
    The broadcast channel with confidential messages is a well studied scenario from the theoretical standpoint, but there is still lack of practical schemes able to achieve some fixed level of reliability and security over such a channel. In this paper, we consider a quasi-static fading channel in which both public and private messages must be sent from the transmitter to the receivers, and we aim at designing suitable coding and modulation schemes to achieve such a target. For this purpose, we adopt the error rate as a metric, by considering that reliability (security) is achieved when a sufficiently low (high) error rate is experienced at the receiving side. We show that some conditions exist on the system feasibility, and that some outage probability must be tolerated to cope with the fading nature of the channel. The proposed solution exploits low-density parity-check codes with unequal error protection, which are able to guarantee two different levels of protection against noise for the public and the private information, in conjunction with different modulation schemes for the public and the private message bits.Comment: 6 pages, 4 figures, to be presented at IEEE ICC'14 - Workshop on Wireless Physical Layer Securit

    An Optimal Unequal Error Protection LDPC Coded Recording System

    Full text link
    For efficient modulation and error control coding, the deliberate flipping approach imposes the run-length-limited(RLL) constraint by bit error before recording. From the read side, a high coding rate limits the correcting capability of RLL bit error. In this paper, we study the low-density parity-check (LDPC) coding for RLL constrained recording system based on the Unequal Error Protection (UEP) coding scheme design. The UEP capability of irregular LDPC codes is used for recovering flipped bits. We provide an allocation technique to limit the occurrence of flipped bits on the bit with robust correction capability. In addition, we consider the signal labeling design to decrease the number of nearest neighbors to enhance the robust bit. We also apply the density evolution technique to the proposed system for evaluating the code performances. In addition, we utilize the EXIT characteristic to reveal the decoding behavior of the recommended code distribution. Finally, the optimization approach for the best distribution is proven by differential evolution for the proposed system.Comment: 20 pages, 18 figure

    Expanding window fountain codes for unequal error protection

    Get PDF
    A novel approach to provide unequal error protection (UEP) using rateless codes over erasure channels, named Expanding Window Fountain (EWF) codes, is developed and discussed. EWF codes use a windowing technique rather than a weighted (non-uniform) selection of input symbols to achieve UEP property. The windowing approach introduces additional parameters in the UEP rateless code design, making it more general and flexible than the weighted approach. Furthermore, the windowing approach provides better performance of UEP scheme, which is confirmed both theoretically and experimentally. © 2009 IEEE

    Expanding window fountain codes for unequal error protection

    Get PDF
    A novel approach to provide unequal error protection (UEP) using rateless codes over erasure channels, named Expanding Window Fountain (EWF) codes, is developed and discussed. EWF codes use a windowing technique rather than a weighted (non-uniform) selection of input symbols to achieve UEP property. The windowing approach introduces additional parameters in the UEP rateless code design, making it more general and flexible than the weighted approach. Furthermore, the windowing approach provides better performance of UEP scheme, which is confirmed both theoretically and experimentally. © 2009 IEEE
    corecore