3 research outputs found

    Optimization of Inter-Subnet Belief Updating in Multiply Sectioned Bayesian Networks

    No full text
    Recent developments show that Multiply Sectioned Bayesian Networks (MSBNs) can be used for diagnosis of natural systems as well as for model-based diagnosis of artificial systems. They can be applied to single-agent oriented reasoning systems as well as multiagent distributed reasoning systems. Belief propagation between a pair of subnets plays a central role in maintenance of global consistency in a MSBN. This paper studies the operation UpdateBelief, presented originally with MSBNs, for inter-subnet propagation. We analyze how the operation achieves its intended functionality, which provides hints for improving its efficiency. New versions of UpdateBelief are then defined that reduce the computation time for inter-subnet propagation. One of them is optimal in the sense that the minimum amount of computation for coordinating multi-linkage belief propagation is required. The optimization problem is solved through the solution of a graph-theoretic problem: the minimum weight open tour i..
    corecore